Cho a,b,c > 0, a+b+c=3. Tìm Min: P=\(\dfrac{ab}{c^2\left(a+b\right)}+\dfrac{ac}{b^2\left(a+c\right)}+\dfrac{bc}{a^2\left(b+c\right)}\)
Cho a,b,c khác 0 thỏa mãn ab+bc+ac=0 . Tính A = \(\frac{bc}{a^2}+\frac{ac}{b^2}+\frac{ab}{c^2}\)
1/Cho Q=\(\frac{6-a-\sqrt{a}}{\sqrt{a}+3}\)với a≥0
a) Rút gọn
b) Tìm giá trị của a để Q có GTLN
2/Cho a,b,c>0. Rút gọn biểu thức
N=\(\sqrt{a+b+c+2\sqrt{ac+bc}}+\sqrt{a+b+c-2\sqrt{ac+bc}}\)
Cho a,b,c > 0 thỏa mãn ab+bc+ac = 3 . Tìm giá trị nhỏ nhất của \(P=\frac{a^3}{b^2+3}+\frac{b^3}{c^2+3}+\frac{c^3}{a^2+3}\)
Cho a,b,c>0 t/m a+b+c=3.
Tìm min \(P=a^2+b^2+c^2+\dfrac{ab+bc+ca}{a^2b+b^2c+c^2a}\)
Tìm a,b,c biết: ab+ac/2 = bc+ba/3 = ca+cb/4 và a-3b+c= 3 (a,b,c khác 0)
Cho ab;c>0.Tìm GTNN của \(\frac{\left(a+b+c\right)^2}{ab+bc+ac}+\frac{ab+bc+ac}{\left(a+b+c\right)^2}\)
B1:cho a,b,c khác 0 thoả mãn ab+ac+bc=0. Tính A=\(\frac{bc}{a^2}\)+\(\frac{ac}{b^2}\)+\(\frac{ab}{c^2}\)
cho a,b,c>0 sao cho a+b+c=3.tìm giá trị nhỏ nhất của biểu thức
P=\(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}+\frac{1}{a^2+b^2+c^2}\)