Cho a,b,c là 3 số thực khác 0 và thỏa mãn:
\(\left\{{}\begin{matrix}a^2\left(b+c\right)+b^2\left(c+a\right)+c^2\left(a+b\right)+2abc=0\\a^{2013}+b^{2013}+c^{2013}=1\end{matrix}\right.\)
Hãy tính giá trị của biểu thức: Q= \(\frac{1}{a^{2013}}+\frac{1}{b^{2013}}+\frac{1}{c^{2013}}\)
CMR: Nếu a, b,c là 3 số thỏa mãn: \(a+b+c=2013\) và \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{2013}\) thì 1 trong 3 số phải có 1 số bằng 2013
Cho a,b,c là ba số thực khác 0 thỏa mãn
\(a^2\left(b+c\right)+b^2\left(c+a\right)+c^2\left(a+b\right)=0\)
\(a^{2013}+b^{2013}+c^{2013}=1\)
cho a,b,c dương chứng minh rằng
\(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\ge\dfrac{a+2013}{b+2013}+\dfrac{b+2013}{c+2013}+\dfrac{c+2013}{d+2013}\)
Câu 1. Cho các số x và y cùng dấu. Chứng minh rằng:
Câu 2. Chứng minh rằng các số sau là số vô tỉ:
Câu 3. Có hai số vô tỉ dương nào mà tổng là số hữu tỉ không?
Câu 4. Cho các số x và y khác 0. Chứng minh rằng:
Câu 5. Cho các số x, y, z dương. Chứng minh rằng:
Câu 6. Chứng minh rằng tổng của một số hữu tỉ với một số vô tỉ là một số vô tỉ.
Câu 7. Chứng minh các bất đẳng thức:
a) (a + b)2 ≤ 2(a2 + b2)
b) (a + b + c)2 ≤ 3(a2 + b2 + c2)
c) (a1 + a2 + ….. + an)2 ≤ n(a12 + a22 + ….. + an2).
Câu 8. Cho a3 + b3 = 2. Chứng minh rằng a + b ≤ 2.
Câu 9. Chứng minh rằng: [x] + [y] ≤ [x + y].
Câu 10. Tìm giá trị lớn nhất của biểu thức:
Câu 33. Tìm giá trị nhỏ nhất của: với x, y, z > 0.
Câu 34. Tìm giá trị nhỏ nhất của: A = x2 + y2 biết x + y = 4.
Câu 35. Tìm giá trị lớn nhất của: A = xyz(x + y)(y + z)(z + x) với x, y, z ≥ 0; x + y + z = 1.
Câu 36. Xét xem các số a và b có thể là số vô tỉ không nếu:
a) ab và a/b là số vô tỉ.
b) a + b và a/b là số hữu tỉ (a + b ≠ 0)
c) a + b, a2 và b2 là số hữu tỉ (a + b ≠ 0)
Câu 37. Cho a, b, c > 0. Chứng minh: a3 + b3 + abc ≥ ab(a + b + c)
Câu 38. Cho a, b, c, d > 0. Chứng minh:
Câu 39. Chứng minh rằng [2x] bằng 2[x] hoặc 2[x] + 1
Câu 1.
a) Cho a ≥ 0, b ≥ 0. Chứng minh bất đẳng thức Cauchy:
b) Cho a, b, c > 0. Chứng minh rằng:
c) Cho a, b > 0 và 3a + 5b = 12. Tìm giá trị lớn nhất của tích P = ab.
Câu 2. Cho a + b = 1. Tìm giá trị nhỏ nhất của biểu thức: M = a3 + b3.
Câu 3. Cho a3 + b3 = 2. Tìm giá trị lớn nhất của biểu thức: N = a + b.
Câu 4. Cho a, b, c là các số dương. Chứng minh: a3 + b3 + abc ≥ ab(a + b + c)
Câu 5. Tìm liên hệ giữa các số a và b biết rằng: |a + b| > |a - b|
Câu 6.
a) Chứng minh bất đẳng thức (a + 1)2 ≥ 4a
b) Cho a, b, c > 0 và abc = 1. Chứng minh: (a + 1)(b + 1)(c + 1) ≥ 8
Câu 21. Cho .
Hãy so sánh S và .
Câu 22. Chứng minh rằng: Nếu số tự nhiên a không phải là số chính phương thì √a là số vô tỉ.
Câu 23. Cho các số x và y cùng dấu. Chứng minh rằng:
Câu 24. Chứng minh rằng các số sau là số vô tỉ:
Câu 25. Có hai số vô tỉ dương nào mà tổng là số hữu tỉ không?
Câu 26. Cho các số x và y khác 0. Chứng minh rằng:
Câu 27. Cho các số x, y, z dương. Chứng minh rằng:
Câu 28. Chứng minh rằng tổng của một số hữu tỉ với một số vô tỉ là một số vô tỉ.
Câu 29. Chứng minh các bất đẳng thức:
a) (a + b)2 ≤ 2(a2 + b2)
b) (a + b + c)2 ≤ 3(a2 + b2 + c2)
c) (a1 + a2 + ….. + an)2 ≤ n(a12 + a22 + ….. + an2).
Câu 30. Cho a3 + b3 = 2. Chứng minh rằng a + b ≤ 2.
Cho ba số thực a,b,c thỏa mãn: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\). Tính giá trị của biểu thức:
\(P=\frac{17}{25}+\left(a^{2013}+b^{2013}\right)\left(b^{2013}+c^{2013}\right)\left(c^{2013}+a^{2013}\right)\)
Cho \(a,b,c>0\) thỏa mãn \(a^4+b^4+c^4=3\). Chứng minh:
\(\dfrac{a^2}{b^3+1}+\dfrac{b^2}{c^3+1}+\dfrac{c^2}{a^3+1}\ge\dfrac{3}{2}\)