Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Big City Boy

CMR: Nếu a, b,c là 3 số thỏa mãn:  \(a+b+c=2013\) và \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{2013}\) thì 1 trong 3 số phải có 1 số bằng 2013

Lấp La Lấp Lánh
31 tháng 10 2021 lúc 11:56

ĐKXĐ: \(a,b,c\ne0\)

\(\left(a+b+c\right).\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=2013.\dfrac{1}{2013}\)

\(\Leftrightarrow1+1+1+\dfrac{a}{b}+\dfrac{a}{c}+\dfrac{b}{a}+\dfrac{b}{c}+\dfrac{c}{a}+\dfrac{c}{b}=1\)

\(\Leftrightarrow\dfrac{a^2c+a^2b+b^2c+ab^2+bc^2+ac^2+2abc}{abc}=0\)

\(\Leftrightarrow a^2c+a^2b+b^2c+ab^2+bc^2+ac^2+2abc=0\)

\(\Leftrightarrow ac\left(a+b\right)+ab\left(a+b\right)+bc\left(a+b\right)+c^2\left(a+b\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left[a\left(b+c\right)+c\left(b+c\right)\right]=0\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=-b\\b=-c\\c=-a\end{matrix}\right.\)

Mà \(a+b+c=2013\)

\(\Leftrightarrow\left[{}\begin{matrix}a=2013\\b=2013\\c=2013\end{matrix}\right.\)(đpcm)

 


Các câu hỏi tương tự
Nguyễn Trọng Chiến
Xem chi tiết
Hong Ra On
Xem chi tiết
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết
Nguyễn Trọng Chiến
Xem chi tiết
Phuong Tran
Xem chi tiết
Nguyễn Thế Hiếu
Xem chi tiết
Big City Boy
Xem chi tiết