cho các số a,b,c thỏa điều kiện \(\left\{{}\begin{matrix}c>0\\\left(c+a\right)^2< ab+bc-2ac\end{matrix}\right.\) chứng minh rằng phương trình ax^2+bx+c=0 luôn luôn có nghiệm
Bài 3. Cho phương trình: \(^{x^2-mx-4=0}\) (m là tham số) (1)
a) Chứng minh phương trình (1) luôn có hai nghiệm phân biệt \(x_1,x_2\) với mọi giá trị của m.
b) Tìm giá trị của m để phương trình (1) có hai nghiệm \(x_1,x_2\) thỏa mãn điều kiện: \(x_1^2+x_1^2=5\).
c) Tìm hệ thức liên hệ giữa \(x_1,x_2\) không phụ thuộc giá trị của m.
a) CMR: nếu a+b+5c=0 thì pt ax2 + bx +c =0(a\(\ne\)0) có 2 nghiệm phân biệt
b)tìm m để pt x2-(2m+4)x+3m+2=0 có 2 nghiệm phân biệt x1, x2 thỏa mãn x2=2x1+3
c)tìm m để pt x2-mx+1=0 có 2 nghiệm phân biệt đều lớn hơn 2
Cho phương trình \(ax^2+bx+c=0\) \(\left(a\ne0\right)\) có 2 nghiệm \(x_1,x_2\) thỏa mãn \(0\le x_1\le x_2\le2\). Tìm giá trị nhỏ nhất của biểu thức \(L=\dfrac{3a^2-ab+ac}{5a^2-3ab+b^2}\)
Cho 2 số a, c thõa mãn ac < 0. Xét hai pt \(\left\{{}\begin{matrix}ax^2+bx+c=0\left(1\right)\\cx^2+bx+a=0\left(2\right)\end{matrix}\right.\)
Gọi \(\alpha\)và \(\beta\) là hai nghiệm lớn nhất của (1) và (2). CMR: \(\alpha+\beta\ge2\)
Cho phương trình: x²-2(m-3)x+(m-4)=0 (1) a) giải phương trình với m=1 b) Chứng minh phương trình (1) luôn có hai nghiệm phân biệt c) Xác định m để phương trình có hai nghiệm trái dấu d)Tính theo m giá trị của biểu thức A=1/x1+1/x2.Tìm m để A € Z để A € Z
Cho phương trình x2 - 2mx + m2 - 1 = 0
Chứng minh phương trình đã cho luôn có 2 nghiệm phân biệt. Gọi x1 , x2 là 2 nghiệm của phương trình ; lập phương trình bậc hai nhận x13 -2mx12 + m2x1 - 2 và x23 - 2mx22+ m2x2 - 2 là nghiệm
cho phương trình ẩn x : x^2 +2(m+3)x. 2m-11 (1)
a/ chứng tỏ phương trình (1) luôn có hai nghiệm phân biệt với mọi giá trị của m
b/ Tìm giá trị của m để phương trình (1) có hai nghiệm x1 ,x2 thỏa mãn hệ thức 1/x1+1/x2=2