Lời giải:
Gọi biểu thức đã cho là $P$. Áp dụng BĐT Cauchy-Schwarz:
\(P+\frac{29}{2}=\frac{4a}{b+c-a}+2+\frac{9b}{c+a-b}+\frac{9}{2}+\frac{16c}{a+b-c}+8\)
\(=\frac{2(a+b+c)}{b+c-a}+\frac{\frac{9}{2}(a+b+c)}{c+a-b}+\frac{8(a+b+c)}{a+b-c}\)
\(=(a+b+c)\left(\frac{2}{b+c-a}+\frac{\frac{9}{2}}{c+a-b}+\frac{8}{a+b-c}\right)\)
\(\geq (a+b+c).\frac{(\sqrt{2}+\sqrt{\frac{9}{2}}+\sqrt{8})^2}{b+c-a+c+a-b+a+b-c}=\frac{81}{2}\)
\(\Rightarrow P\geq \frac{81}{2}-\frac{29}{2}=26\) (đpcm)