Chương 4: BẤT ĐẲNG THỨC, BẤT PHƯƠNG TRÌNH

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Serena chuchoe

Cho a, b, c là các số thực dương thỏa mãn: \(a+b+c=\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\).

CMR: \(2\left(a+b+c\right)\ge\sqrt{a^2+3}+\sqrt{b^2+3}+\sqrt{c^2+3}\)

@Ace Legona ai-đò júp với :v

Akai Haruma
3 tháng 8 2017 lúc 0:32

Lời giải:

Từ điều kiện

\(a+b+c=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\Rightarrow abc(a+b+c)=ab+bc+ac\)

Sử dụng hệ quả của BĐT AM-GM:

\((ab+bc+ac)^2\geq 3abc(a+b+c)\Rightarrow \frac{(ab+bc+ac)^2}{3}\geq ab+bc+ac\)

Suy ra \(ab+bc+ac\geq 3\). Do đó:

\(\text{VP}\leq \sqrt{a^2+ab+bc+ac}+\sqrt{b^2+ab+bc+ac}+\sqrt{c^2+ab+bc+ac}\)

\(\Leftrightarrow \text{VP}\leq \sqrt{(a+b)(a+c)}+\sqrt{(b+c)(b+a)}+\sqrt{(c+a)(c+b)}\)

Áp dụng BĐT AM-GM: \(\sqrt{(a+b)(a+c)}\leq \frac{a+b+a+c}{2}\) và tương tự....

\(\Rightarrow \text{VP}\leq \frac{a+b+a+c}{2}+\frac{b+c+b+a}{2}+\frac{c+a+c+b}{2}=2(a+b+c)=\text{VT}\)

Do đó ta có đpcm

Dấu bằng xảy ra khi \(a=b=c=1\)


Các câu hỏi tương tự
Thảo Vi
Xem chi tiết
Serena chuchoe
Xem chi tiết
vung nguyen thi
Xem chi tiết
Kinder
Xem chi tiết
Thảo Vi
Xem chi tiết
Tịnh Nhiên
Xem chi tiết
Kimian Hajan Ruventaren
Xem chi tiết
Kimian Hajan Ruventaren
Xem chi tiết
Kimian Hajan Ruventaren
Xem chi tiết