Ta có đẳng thức
\(\left(a^3+b^3+c^3\right)^2-\left(a^4+b^4+c^4\right)\left(ab+bc+ca\right)=\dfrac{1}{2}\Sigma\left[\left(a^2-b^2\right)^2+c^4\right]\left(a-b\right)^2\ge0\)
Từ đó suy ra ĐPCM
Đẳng thức xảy ra khi và chỉ khi \(a=b=c\)
Ta có đẳng thức
\(\left(a^3+b^3+c^3\right)^2-\left(a^4+b^4+c^4\right)\left(ab+bc+ca\right)=\dfrac{1}{2}\Sigma\left[\left(a^2-b^2\right)^2+c^4\right]\left(a-b\right)^2\ge0\)
Từ đó suy ra ĐPCM
Đẳng thức xảy ra khi và chỉ khi \(a=b=c\)
cho a,b,c là số thực dương. Cmr:
1.\(\dfrac{a}{b^2+bc+c^2}+\dfrac{b}{c^2+ca+a^2}+\dfrac{c}{a^2+ab+b^2}\ge\dfrac{a+b+c}{ab+bc+ca}\)
2.\(\left(a+b+c\right)\left(\dfrac{a}{\left(b+c\right)^2}+\dfrac{b}{\left(c+a\right)^2}+\dfrac{c}{\left(a+b\right)^2}\right)\ge\dfrac{9}{4}\)
cho a,b,c là các số thực dương. Cmr
\(\dfrac{a^4}{b^3\left(c+a\right)}+\dfrac{b^4}{c^3\left(a+b\right)}+\dfrac{c^4}{a^3\left(b+c\right)}\ge\dfrac{3}{2}\)
CMR với a,b,c là số thực dương thì :
\(a^4+b^4+c^4+abc\left(a+b+c\right)\ge ab\left(a^2+b^2\right)+bc\left(b^2+c^2\right)+ac\left(a^2+c^2\right)\)
cho 3 số thực dương a,b,c.CMR
\(\left(a^2+2\right)\left(b^2+2\right)\left(c^2+2\right)\ge9\left(ab+bc+ca\right)\)
Cho a, b, c là các số thực không âm thỏa mản \(a^2+b^2+c^2=3\)
CMR: \(\left(a-b\right)\left(b-c\right)\left(c-a\right)+2\ge\dfrac{2}{3}\left(ab+bc+ca\right)\)
Cho a,b,c là các số thực dương thỏa mãn a+b+c=1. Chứng minhh rằng:
\(\left(1+ab+bc+ca\right)\left(\dfrac{1}{a+bc}+\dfrac{1}{b+ca}+\dfrac{1}{c+ab}\right)\le\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
Cho \(a;b;c\) là các số thực dương thỏa mãn :\(0< a;b;c< 1\). Chứng minh rằng:
\(\dfrac{1}{a.\left(1-b\right)}+\dfrac{1}{b.\left(1-c\right)}+\dfrac{1}{c.\left(1-a\right)}\ge\dfrac{3}{1-\left(a+b+c\right)+ab+bc+ac}\)
P/s: Đề cương toán lớp 10 trường THPT chuyên sư phạm Hà Nội.
Em xin nhờ quý thầy cô giáo và các bạn giúp đỡ, em cám ơn nhiều ạ!
Cho a,b,c là các số dương. Chứng minh rằng:
\(\dfrac{a+b+c}{\sqrt[3]{abc}}\)+\(\dfrac{8abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)\(\ge\)4
Cho các số thực dương : \(a;b;c\) thỏa mãn điều kiện : \(ab+bc+ac+abc=4\)
Chứng minh rằng : \(\dfrac{1}{\sqrt{2.\left(a^2+b^2\right)}+4}+\dfrac{1}{\sqrt{2.\left(b^2+c^2\right)}+4}+\dfrac{1}{\sqrt{2.\left(c^2+a^2\right)}+4}\le\dfrac{1}{2}\)
P/s: Em xin phép nhờ sự giúp đỡ của quý thầy cô giáo và các bạn yêu toán.
Em cám ơn nhiều lắm ạ!