Cho a, b, c là ba số phân biệt. Chứng minh rằng giá trị của biểu thức sau không phụ thuộc vào giá trị của x:
\(S\left(x\right)=\dfrac{\left(x-a\right)\left(x-b\right)}{\left(c-a\right)\left(c-b\right)}+\dfrac{\left(x-b\right)\left(x-c\right)}{\left(a-b\right)\left(a-c\right)}+\dfrac{\left(x-c\right)\left(x-a\right)}{\left(b-c\right)\left(b-a\right)}\)
Thực hiên phép tính:
a) \(\dfrac{1}{\left(a-b\right)\left(b-c\right)}+\dfrac{1}{\left(b-c\right)\left(c-a\right)}+\dfrac{1}{\left(c-a\right)\left(a-b\right)}\)
b) \(\dfrac{\left[a^2-\left(b+c\right)^2\right]\left(a+b-c\right)}{\left(a+b+c\right)\left(a^2+c^2-2ac-b^2\right)}\)
c) \(\dfrac{x-1}{x^3}-\dfrac{x+1}{x^3-x^2}+\dfrac{3}{x^3-2x^2+x}\)
d) \(\left[\dfrac{x^2-y^2}{xy}-\dfrac{1}{x+y}\left(\dfrac{x^2}{y}-\dfrac{y^2}{x}\right)\right]:\dfrac{x-y}{x}\)
* Rút gọn phân thức:
a. \(\dfrac{a^3+b^3+c^3-3abc}{a^2+b^2+c^2-ab-bc-ac}\)
b. \(\dfrac{x^3-y^3+z^3+3xyz}{\left(x+y\right)^2+\left(y+z\right)^2+\left(z-x\right)^2}\)
d. \(\dfrac{a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)}{a^4\left(b^2-c^2\right)+b^4\left(c^2-a^2\right)+c^4\left(a^2-b^2\right)}\)
e. \(\dfrac{a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)}{ab^2-ac^2-b^3+bc^2}\)
@Lê Gia Bảo @Lê Thị Nơ
Cứu trẫm. :3
Thực hiện phép tính :
\(\dfrac{1}{a\left(a-b\right)\left(a-c\right)}+\dfrac{1}{b\left(b-a\right)\left(b-c\right)}+\dfrac{1}{c\left(c-a\right)\left(c-b\right)}\)
tìm a,b,c biết:
\(\dfrac{x^2-x+2}{\left(x-1\right)^3}=\dfrac{A}{\left(x-1\right)^3}+\dfrac{B}{\left(x-1\right)^2}+\dfrac{C}{x-1}\)
rút gọn các phân thức
a,\(\dfrac{7xy^3\left(x-2y\right)}{14x^2y^2\left(x-2y\right)^2}\)
b,\(\dfrac{4a^2-8ab}{2\left(2b-a\right)^3}\)
c,\(\dfrac{3x^3-3x}{x^4-1}\)
d,\(\dfrac{45x\left(3-x\right)}{15x\left(x-3\right)^3}\)
Thực hiện phép tính :
\(\dfrac{1}{\left(b-c\right)\left(a^2+ac-b^2-bc\right)}+\dfrac{1}{\left(c-a\right)\left(b^2+ab-c^2-ac\right)}+\dfrac{1}{\left(a-b\right)\left(c^2+bc-a^2-ab\right)}\)
Thực hiện phép tính:
a) \(\dfrac{1}{x-y}+\dfrac{3xy}{y^3-x^3}+\dfrac{x-y}{x^2+xy+y^2}\)
b) \(\dfrac{2x+y}{2x^2-xy}+\dfrac{16x}{y^2-4x^2}+\dfrac{2x-y}{2x^2+xy}\)
c) \(\dfrac{xy}{ab}+\dfrac{\left(x-a\right)\left(y-a\right)}{a\left(a-b\right)}-\dfrac{\left(x-b\right)\left(y-b\right)}{b\left(a-b\right)}\)
d) \(\dfrac{x^3}{x-1}-\dfrac{x^2}{x+1}-\dfrac{1}{x-1}+\dfrac{1}{x+1}\)
Bt thực hiện phép tính:
a/\(\dfrac{1}{x\left(x+1\right)}+\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}+...+\dfrac{1}{\left(x+2017\right)\left(x+2018\right)}\)
b/\(\dfrac{1}{x\left(x+2\right)\left(x+4\right)}+\dfrac{1}{\left(x+2\right)\left(x+4\right)\left(x+6\right)}+...+\dfrac{1}{\left(x+96\right)\left(x+98\right)\left(x+100\right)}\)
GIÚP MÌNH VỚI!!!!!! THỨ HAI THẦY KIỂM TRA RỒI!