Lời giải:
Áp dụng BĐT Bunhiacopxky:
\(\left (\frac{bc}{a}+\frac{ac}{b}+\frac{ab}{c}\right)(abc+abc+abc)\geq (ab+bc+ac)^2\)
\(\Leftrightarrow \frac{ab}{c}+\frac{bc}{a}+\frac{ac}{b}\geq \frac{(ab+bc+ac)^2}{3abc}\) $(1)$
Áp dụng BĐT Cauchy:
\(\left\{\begin{matrix} a^2b^2+b^2c^2\geq 2ab^2c\\ a^2b^2+c^2a^2\geq 2a^2bc\\ b^2c^2+c^2a^2\geq 2abc^2\end{matrix}\right.\Rightarrow a^2b^2+b^2c^2+c^2a^2\geq abc(a+b+c)\)
\(\Leftrightarrow (ab+bc+ac)^2\geq 3abc(a+b+c)(2)\)
Từ \((1),(2)\Rightarrow \frac{ab}{c}+\frac{bc}{a}+\frac{ac}{b}\geq a+b+c\) (đpcm)
Dấu bằng xảy ra khi \(a=b=c\)
b) Ta có:
\(\text{VT}+3=(a+b+c)\left (\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\)
Áp dụng BĐT Bunhiacopxky:
\(\left ( \frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a} \right )(a+b+b+c+c+a)\geq (1+1+1)^2=9\)
\(\Rightarrow \frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\geq \frac{9}{2(a+b+c)}\)
\(\Rightarrow \text{VT}+3\geq (a+b+c).\frac{9}{2(a+b+c)}=\frac{9}{2}\Rightarrow \text{VT}\geq \frac{3}{2}\)
Do đó ta có đpcm.