Với mọi a,b >0 có \(a^3+b^3\ge ab\left(a+b\right)\)(tự CM). Dấu "=" xảy ra <=> a=b và a,b>0
<=> \(a^3+b^3+abc\ge ab\left(a+b+c\right)\)
<=> \(\frac{1}{a^3+b^3+abc}\le\frac{1}{ab\left(a+b+c\right)}\)
CM tương tự cx có :\(\frac{1}{b^3+c^3+abc}\le\frac{1}{bc\left(a+b+c\right)}\)
\(\frac{1}{c^3+a^3+abc}\le\frac{1}{ac\left(a+b+c\right)}\)
=>A= \(\frac{1}{a^3+b^3+abc}+\frac{1}{b^3+c^3+abc}+\frac{1}{c^3+a^3+abc}\le\frac{1}{ab\left(a+b+c\right)}+\frac{1}{bc\left(a+b+c\right)}+\frac{1}{ac\left(a+b+c\right)}=\frac{c}{abc\left(a+b+c\right)}+\frac{a}{abc\left(a+b+c\right)}+\frac{b}{abc\left(a+b+c\right)}\)
<=> A\(\le\frac{1}{abc}\)
Dấu "=" xảy ra <=> a=b=c>0