Giải phương trình \(\left|x-2013\right|^{2013}+\left|x-2014\right|^{2014}=1\)
x-1/2011+x-2/2012+x-3/2013+x-4/2014=x+2016
cho a,b,c >0 thỏa mãn a.b.c=1. chứng minh rằng \(\dfrac{1}{a^3.\left(b+c\right)}+\dfrac{1}{b^3\left(a+c\right)}+\dfrac{1}{c^3.\left(a+b\right)}>=\dfrac{3}{2}\)
Cho a > b > c > 0 và a2 + b2 + c2 =1
Chứng minh rằng: \(\dfrac{a^2}{b+c}+\dfrac{b^2}{a+c}+\dfrac{c^2}{a+b}\ge\dfrac{1}{2}\)
Giải giùm mình mấy bài BPT này nha
a) Chứng minh: \(\dfrac{a+b}{2}\le\sqrt{\dfrac{a^2+b^2}{2}}\)
b) Cho a,b>0 chứng minh: \(\dfrac{a}{\sqrt{b}}+\dfrac{b}{\sqrt{a}}\ge\sqrt{a}+\sqrt{b}\)
c) Cho a+b\(\ge\)0 chứng minh: \(\dfrac{a+b}{2}\ge\sqrt[3]{\dfrac{a^3+b^3}{2}}\)
d) Chứng minh: \(\dfrac{a+b+c}{3}\ge\sqrt{\dfrac{ab+bc+ac}{3}}\) ; \(a,b,c\ge0\)
e) Chứng minh: \(\dfrac{a^2+b^2+c^2}{3}\ge\left(\dfrac{a+b+c}{3}\right)^2\)
Bài 1: Cho a, b, c > 0. Chứng minh:
\(\dfrac{ab}{c}+\dfrac{bc}{a}+\dfrac{ac}{b}\ge a+b+c\)
Bài 2:
a) Tìm GTLN của A = \(\dfrac{x^2}{x^4+x^2+1}\)
b) Tìm GTLN của B = xy biết 4x + 5y = 40
Bài 3: Cho a, b, c > 0. Chứng minh:
\(\dfrac{-a+b+c}{2a}+\dfrac{a-b+c}{2b}+\dfrac{a+b-c}{2c}\ge\dfrac{3}{2}\)
Bài 4: Cho m, n > 0. Chứng minh:
\(\dfrac{a^2}{m}+\dfrac{b^2}{n}\ge\dfrac{\left(a+b\right)^2}{m+n}\)
Cho a > 0 , b > 0. Chứng minh \(\dfrac{1}{a}+\dfrac{1}{b}>hoăc=\dfrac{4}{a+b}\)
cho a,b,c là các số thực dương
Chứng minh rằng: \(\dfrac{a+3c}{a+b}+\dfrac{a+3b}{a+c}+\dfrac{2\text{a}}{b+c}\ge5\)
Chứng minh bđt:
\(\left(a+b+c\right)\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{a+c}\right)\ge\dfrac{9}{2}\forall a,b,c>0\)