\(Q=2\left(a+b\right)+\frac{a^2}{b}+\frac{b^2}{a}=\frac{\left(a^2+b^2\right)\left(a+b\right)}{4}+\frac{a^2}{b}+\frac{b^2}{a}\)
\(Q=\frac{a^3+a^3+8}{8}+\frac{b^3+b^3+8}{8}+\frac{a^2b}{4}+\frac{a^2}{b}+\frac{b^2a}{4}+\frac{b^2}{a}-2\)
\(Q\ge\frac{3\sqrt[3]{8a^6}}{8}+\frac{3\sqrt[3]{8b^6}}{8}+2\sqrt{\frac{a^4b}{4a}}+2\sqrt{\frac{b^4a}{4a}}-2\)
\(Q\ge\frac{3}{4}\left(a^2+b^2\right)+a^2+b^2-2=12\)
Dấu "=" xảy ra khi \(a=b=2\)