Lời giải:
\(S=a^2+\frac{18}{\sqrt{a}}=a^2(1-\frac{1}{2\sqrt{6}})+\frac{a^2}{2\sqrt{6}}+\frac{18}{\sqrt{a}}\)
Áp dụng BĐT AM-GM:
\(\frac{a^2}{2\sqrt{6}}+\frac{18}{\sqrt{a}}\geq 2\sqrt{\frac{3\sqrt{6}.\sqrt{a^3}}{2}}\geq 2\sqrt{\frac{3\sqrt{6}.\sqrt{6^3}}{2}}=6\sqrt{6}\) (do $a\geq 6$)
\(a^2(1-\frac{1}{2\sqrt{6}}\geq 6^2(1-\frac{1}{2\sqrt{6}})=36-3\sqrt{6}\) (do $a\geq 6$)
Cộng lại:
\(\Rightarrow S\ge 36+3\sqrt{6}\)
Vậy $S_{\min}=36+3\sqrt{6}$ khi $a=6$