A = 1 + 2 + 22 + ....... + 22002
2A = 2 + 22 + 23 + ............ + 22003
2A - A = ( 2 + 22 + 23 + ........... + 22003 ) - ( 1 + 2 + 22 + ......... + 22002 )
2A - A = 2 + 22 + 23 + ............... + 22003 - 1 - 2 - 22 - ............... - 22002
A = 22003 - 1
Mà 22003 - 1 = 22003 - 1
Vậy A = B
A=1+2+\(2^2\)+...+\(2^{2002}\)
2A=2+\(2^2\)+\(2^3\)+...+\(2^{2002}\)+\(2^{2003}\)
-
A=1+2+\(2^2\)+...+\(2^{2002}\)
\(\Rightarrow2A-A=2^{2003}-1\)
\(\Rightarrow A=2^{2003}-1\)
Vì: \(2^{2003}-1=2^{2003}-1\)
\(\Rightarrow A=B\)
Vậy A=B