Ta có:
\(\left\{{}\begin{matrix}sin^2x+cos^2x=1\\4sin^4x+3cos^4x=\dfrac{7}{4}\end{matrix}\right.\)
\(\Rightarrow4sin^4x+3\left(1-sin^2x\right)^2=\dfrac{7}{4}\)
\(\Leftrightarrow7sin^4x-6sin^2x+\dfrac{5}{4}=0\) \(\Rightarrow\left[{}\begin{matrix}sin^2x=\dfrac{1}{2}\Rightarrow cos^2x=\dfrac{1}{2}\\sin^2x=\dfrac{5}{14}\Rightarrow cos^2x=\dfrac{9}{14}\end{matrix}\right.\)
Do đó: \(\left[{}\begin{matrix}A=\dfrac{7}{4}\\A=\dfrac{57}{28}\end{matrix}\right.\)