3/4pi<a<pi
=>sin a>0; cosa<0
sin2a=-4/5
=>2*sina*cosa=-4/5
=>sina*cosa=-2/5
(sina-cosa)^2=sin^2a+cos^2a-2*sina*cosa=1+4/5=9/5
=>sin a-cosa=3/căn 5
3/4pi<a<pi
=>sin a>0; cosa<0
sin2a=-4/5
=>2*sina*cosa=-4/5
=>sina*cosa=-2/5
(sina-cosa)^2=sin^2a+cos^2a-2*sina*cosa=1+4/5=9/5
=>sin a-cosa=3/căn 5
Cho góc α thoả mãn 0<α<\(\dfrac{\pi}{2}\) và sin α= \(\dfrac{4}{5}\). tính P=cos2α
A. \(P=\dfrac{7}{25}\)
B. \(P=-\dfrac{7}{25}\)
C. \(P=-\dfrac{12}{25}\)
D. \(P=\dfrac{12}{25}\)
Cho 0<α<π/2. Xét dấu A=cos(α+π)
tính giá trị biểu thức
sin(x+π/5) sin(x+2π/5)+sin (x+3π/5) + sin(x+4π/5)
Giá trị của biểu thức P=\(\left[tan\frac{17\text{Π }}{4}+tan\left(\frac{7\text{Π }}{2}-x\right)\right]^2+\left[cot\frac{13\text{Π }}{4}+cot\left(7\text{Π }-2\right)\right]^2\)
CMR
sin2 x + sin2 ( x-π/3) -sinx.sin (x-π/3)= 3/4
Nếu \(cot1,25.tan\left(4\text{ }Π+1,25\right)-sin\left(x+\frac{Π}{2}\right).cos\left(6Π-x\right)=0\) thì tanx bằng
a) Cho hình chữ nhật ABCD có cạnh AB=4, BC=6, M là trung điểm của BC, N là điểm trên cạnh CD sao cho ND=3NC. Khi đó bán kính của đường tròn ngoại tiếp tam giác AMN là?
b) Cho tam giác đều ABC; gọi D là điểm thỏa mãn \(\overrightarrow{DC}=2\overrightarrow{BD}\). Gọi R và r lần lượt là bán kính đường tròn ngoại tiếp vs nội tiếp của tam giác ADC. Tính tỉ số \(\dfrac{R}{r}\)
Cho DABC thỏa điều kiện : \(sin^2A+sin^2B+cos^2C+\frac{1}{4}=2sinA.sinB+cosC.\) Chứng minh rằng DABC đều.
Cho tam giác ABC có BC = a, góc BAC = 60 độ và hai đường trung tuyến BM và CN vuông góc với nhau. Tính diện tích tam giác