\(4a^2-5ab+b^2=0\Leftrightarrow\left(a-b\right)\left(4a-b\right)=0\)
\(\Leftrightarrow4a-b=0\Rightarrow b=4a\)
\(\Rightarrow P=\frac{a.4a}{4a^2-\left(4a\right)^2}=\frac{4}{4-16}=-\frac{1}{3}\)
\(4a^2-5ab+b^2=0\Leftrightarrow\left(a-b\right)\left(4a-b\right)=0\)
\(\Leftrightarrow4a-b=0\Rightarrow b=4a\)
\(\Rightarrow P=\frac{a.4a}{4a^2-\left(4a\right)^2}=\frac{4}{4-16}=-\frac{1}{3}\)
Cho biểu thức \(P=\dfrac{2a +b}{3a-b}\). Với a>b>0 và \(2\left(a^2+b^2\right)=5ab\) thì P=
Cho a, b, c thỏa mãn \(0< a,b,c< \frac{1}{2}\) và 2a + 3b + 4c = 3. Tìm GTNN của biểu thức:
\(P=\frac{2}{a\left(3b+4c-2\right)}+\frac{9}{b\left(4a+8c-3\right)}+\frac{8}{c\left(2a+3b-1\right)}\)
Cho phương trình: ax^2 + bx + c = 0 (a khác 0) có hai nghiệm x1, x2 thoả mãn điều kiện:0< = x1< = x2 < = 2 . Tìm giá trị lớn nhất của biểu thức: Q = \(\frac{2a^2-3ab+b^2}{2a^2-ab+ac}\)
Cho biểu thức P = \(\left(\dfrac{4a}{\sqrt{a}-1}-\dfrac{\sqrt{a}}{a-\sqrt{a}}\right).\dfrac{\sqrt{a}-1}{a^2}\) với a>0 và a \(\ne\)1
a)Rút gọn biểu thức P b)Với giá trị nào của a thì P = 3
Cho số thực a khác 0 và b thay đổi nhưng thỏa 2a+b=4ac. C/m biểu thức \(Q=\frac{a}{b}+\frac{b}{4a}-4ab\) là hằng số
Cho a, b là các số dương thỏa mãn a + b + 2ab = 12. Tìm giá trị nhỏ nhất của biểu thức\(A=\frac{a^2+ab}{a+2b}+\frac{b^2+ab}{2a+b}\)
Cho biểu thức \(M=\dfrac{a\sqrt{a}-b\sqrt{b}}{a-b}-\dfrac{a}{\sqrt{a}+\sqrt{b}}-\dfrac{b}{\sqrt{b}-\sqrt{a}}\) với a,b>0 và \(a\ne b\) . Rút gọn M và tính giá trị biểu thức M biết \(\left(1-a\right).\left(1-b\right)+2\sqrt{ab}=1\)
Cho a,b,c >0 và a+b+c =6 . Tìm giá trị lớn nhất của biểu thức \(A=\frac{ab}{a+3b+2c}+\frac{bc}{b+3c+2a}+\frac{ac}{c+3a+2b}\)
cho a,b,c thỏa mãn a+b+c=0 và a2=2(a+c+1)(a+b-1). tính giá trị A=a2+b2+c2