cho a, b, c thỏa mãn a+b+c=2, ab+bc+ac=1. Chứng minh 4/3 >= a,bb,c >=0
Bài 1 cho các số dương a,bc,d thỏa a+b+c+d=1 chứng minh [tex]\frac{1}{a}+\frac{1}{b}+\frac{4}{c}+\frac{16}{d}\geq 64[/tex]
Bài 2 Cho a,b,c là các số không âm thỏa a+b+c chứng minh b+c[tex]\geq[/tex] 16abc
Cho 2 số A(n) và B(n) như sau:
A = 22n + 1 + 2n+1 + 1
B = 22n + 1 – 2n + 1 + 1
Chứng minh rằng với mọi số tự nhiên n, tồn tại một và duy nhất một trong hai số A(n) hoặc B(n) chia hết cho 5.
1/Cho (a2 - bc)( b- abc) = (b2 -ac)(a-abc)
a/ Chứng minh rằng: 1/a + 1/b + 1/c = a+b+c
b/ Chứng tỏ : a(b-c)(b+c-a)2 + c(a-b)(a+b-c)2 = b(a-c)(a+c-b)
2/ Với x là 1 số thực bất kỳ. Chứng minh rằng x-x2 +1: x2 -1 <1
3/ Cho các số x,y thỏa mãn : Chứng minh rằng x2 +y2 +(1+xy : x+y)2 >=2
Bài 1 Cho a,b,c là các số không âm thỏa a+b+c=1 chứng minh b+c\(\ge\) 16abc
Bài 2 Cho các số dương a,b,c,d thỏa a+b+c+d=1 chứng minh \(\dfrac{1}{a}\)+\(\dfrac{1}{b}\)+\(\dfrac{4}{c}\)+\(\dfrac{16}{d}\ge64\)
Cho a, b, c là ba số thực thỏa mãn abc = 1 và a^3 > 36. Chứng minh rằng: 1/a*(b^2 + c^2 - bc) > b + c - a/3
Cho các số a, b, c thỏa mãn 1 \(\ge\)a, b, c \(\ge\)0. Chứng minh rằng :
\(a+b^2+c^3-ab-bc-ca\le1\)
1) Chứng minh các số thực a, b, c, d tùy ý, ta có: a^4 + b^4 + c^2 + 1 >= 2a(ab^2 - a + c + 1)
Ai nhanh và đúng thì mình sẽ tick và add friends nhé. Thanks. Please help me!!!
bài 1 : cho a, b, c>0 thỏa mãn a2+b2+c2=3
chứng minh rằng \(\dfrac{1}{1+ab}+\dfrac{1}{1+bc}+\dfrac{1}{1+ac}>=\dfrac{3}{2}\)
bài 2 : cho a, b, c>0. chứng minh rằng
\(\dfrac{a}{a+2b+3c}+\dfrac{b}{b+2c+3a}+\dfrac{c}{c+2a+3b}>=\dfrac{1}{2}\)
bài 3 : cho a, b, c>0 thỏa mãn ab+bc+ac=abc
tìm GTLN của \(S=\dfrac{1}{3a+2b+c}+\dfrac{1}{3b+2c+a}+\dfrac{1}{3c+2a+b}\)