Lời giải:
Vì \(3x=5y\Rightarrow y=\frac{3}{5}x=0,6x\). Thay vào điều kiện thứ 2 ta có:
\(2x+3y=-39\)
\(\Leftrightarrow 2x+3.0,6x=-39\)
\(\Leftrightarrow 3,8x=-39\Rightarrow x=\frac{-195}{19}\)
\(\Rightarrow y=0,6x=0,6.\frac{-195}{19}=\frac{-117}{19}\)
Vậy \((x,y)=(\frac{-195}{19}; \frac{-117}{19})\)
Ta có: \(3x=5y\Leftrightarrow\dfrac{x}{5}=\dfrac{y}{3}\Leftrightarrow\dfrac{2x}{10}=\dfrac{3y}{9}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{2x}{10}=\dfrac{3y}{9}=\dfrac{2x+3y}{10+9}=\dfrac{-39}{19}\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{5}=\dfrac{-39}{19}\\\dfrac{y}{3}=\dfrac{-39}{19}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-195}{19}\\y=\dfrac{-177}{19}\end{matrix}\right.\)
Vậy, ...
3x=5y => Ta có : \(\dfrac{x}{5}\)=\(\dfrac{y}{3}\) và biết 2x+3y= -39
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{2.x+3.y}{2.5+3.3}=\dfrac{-39}{19}\)
=> x=\(\dfrac{-39}{19}\).5=\(\dfrac{-195}{19}\)
=> y=\(\dfrac{-39}{19}\).3=\(\dfrac{-177}{19}\)