Ta có \(3\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\)
\(\Leftrightarrow x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}\)
Do đó \(Q\ge\frac{\left(x+y+z\right)^2}{3}+\frac{1}{x+y+z}=\frac{\left(x+y+z\right)^2}{3}+\frac{9}{x+y+z}+\frac{9}{x+y+z}-\frac{17}{x+y+z}\)
\(\ge3\sqrt[3]{\frac{9\cdot9\cdot\left(x+y+z\right)^2}{3\cdot\left(x+y+z\right)^2}}-\frac{17}{x+y+z}\ge9-\frac{17}{3\sqrt[3]{xyz}}=9-\frac{17}{3}=\frac{10}{3}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=z=1\)