chứng minh nếu x2−yzx(1−yz)=y2−zxy(1−xz)x2−yzx(1−yz)=y2−zxy(1−xz).Với x≠y,xyz≠0,yz≠1,xz≠1x≠y,xyz≠0,yz≠1,xz≠1 thì xy+xz+yz=xyz(x+y+z)
chứng minh nếu x2−yzx/(1−yz)=y2−zxy/(1−xz)x2−yzx(1−yz)=y2−zxy(1−xz).Với x≠y,xyz≠0,yz≠1,xz≠1x≠y,xyz≠0,yz≠1,xz≠1 thì xy+xz+yz=xyz(x+y+z)
:| ; =)) ; :))
Đề : Cho 3 số thức dương thỏa mãn
\(xy+yz+zx=1\)
Chứng minh rằng : \(\frac{1}{1+xy+z^2}+\frac{1}{1+yz+x^2}+\frac{1}{1+zx+y^2}\le\frac{9}{5}\)
Cho x,y,z là 3 số dương thỏa mãn :x + y + z =1 .Tìm giá trị nhỏ nhất của :
\(M=\frac{1}{x^2+y^2+z^2}+\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}\)
GIÚP MÌNH NHA!...
Cho 3 số x,y vả z thoả mãn 1/x+1/y+1/z=0. Hãy tính A= yz/x^2+zx/y^2+xy/z^2
Cho x,y,z là các số dương \(\le1\). Chứng minh rằng : \(\frac{x}{1+y+xz}+\frac{y}{1+z+xy}+\frac{z}{1+x+yz}\le\frac{3}{x+y+z}\)
GIÚP MÌNH NHA!...
Cho các số nguyên dương a, b thảo mãn ab+1 là số chính phương. Chứng minh rằng tồn tại số nguyên dương c sao cho ac+1 và bc+1 đều là các số chính phương
1 . a) Chứng minh rằng số n2 +2014 với n nguyên dương không là số chính phương.
b) Cho a, b là các số dương thỏa mãn a3 + b3 = a5 + b5.
Chứng minh rằng: a2 + b2 ≤ 1 + ab
1.chứng minh không có số nguyên x,y nào thỏa mãn : x^2 + 1998 = y^2
2. tìm a để x= a-1 là nghiệm của đa thức x^2 - ax+1=0