Cho 3 số a, b, c thỏa mãn: \(0< a\le b\le c\)
CMR: \(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\ge\dfrac{b}{a}+\dfrac{c}{b}+\dfrac{a}{c}\)
cho a,b,c > 0 thỏa mãn a + b + c = 6. Chứng minh:
\(\dfrac{a}{\sqrt{b^3+1}}+\dfrac{b}{\sqrt{c^3+1}}+\dfrac{c}{\sqrt{a^3+1}}\ge2\)
Cho 3 số thực a, b, c đôi một khác nhau thỏa mãn: \(\dfrac{a}{b-c}+\dfrac{b}{c-a}+\dfrac{c}{a-b}=0\)
CMR: \(\dfrac{a}{\left(b-c\right)^2}+\dfrac{b}{\left(c-a\right)^2}+\dfrac{c}{\left(a-b\right)^2}=0\)
cho a,b,c là các số thực dương.CMR:\(\dfrac{a^5}{a^2+ab+b^2}+\dfrac{b^5}{b^2+bc+c^2}+\dfrac{c^5}{c^2+ca+a^2}\ge\dfrac{a^3+b^3+c^3}{3}\)
Cho a, b, c là các số thực dương thỏa mãn a + b + c = 0. CMR:
\(\dfrac{a+bc}{b+c}+\dfrac{b+ca}{c+a}+\dfrac{c+ab}{a+b}\ge2\)
Cho \(\dfrac{a-\left(c-b\right)}{b-c}+\dfrac{b-\left(a-c\right)}{c-a}+\dfrac{c-\left(b-a\right)}{a-b}=3\)
Chứng minh rằng: \(\dfrac{a}{\left(b-c\right)^2}+\dfrac{b}{\left(c-a\right)^2}+\dfrac{c}{\left(a-b\right)^2}=0\)
Cho a,b,c phb khác 0 và a+b+c=0. Tính:
\(C=\left(\dfrac{a}{b-c}+\dfrac{b}{c-a}+\dfrac{c}{a-b}\right)\left(\dfrac{b-c}{a}+\dfrac{c-a}{b}+\dfrac{a-b}{c}\right)\)
cho a, b, c thỏa mãn:\(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}=1\)
chứng minh: \(\dfrac{a^2}{b+c}+\dfrac{b^2}{a+c}+\dfrac{c^2}{a+b}=0\)
cho 3 số a,b,c khác 0 và đôi 1 khác nhau và thỏa mãn \(a+b+c=0\)
tính giá trị của biểu thức \(Q=\left(\dfrac{a}{b-c}+\dfrac{b}{c-a}+\dfrac{c}{a-b}\right)\left(\dfrac{b-c}{a}+\dfrac{c-a}{b}+\dfrac{a-b}{c}\right)\)