Dễ thấy: \(a,b,c\) là 3 nghiệm của pt
\(\left(x-a\right)\left(x-b\right)\left(x-c\right)=x^3-6x^2+9x+m\left(m=-abc\right)\)
Đặt \(f\left(x\right)=x^3-6x^2+9x+m\)
\(f'\left(x\right)=3x^2-12x+9\Rightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)
\(f\left(x\right)\) có cực đại tại \(x=1\); cực tiểu tại \(x=3\Rightarrow a< 1< b< 3< c\left(1\right)\)
Vì \(f\left(x\right)\) có 3 nghiệm \(a,b,c\) khác nhau (với hệ số của \(x^3>0)\), nên \(f_{max}>0;f_{min}< 0\)
\(f_{max}=f\left(1\right)=1-6+9+m=m+4>0\Rightarrow m>-4\)
\(f_{min}=f\left(3\right)=3^3-6\cdot3^2+9\cdot3+m< 0\Rightarrow m< 0\)
\(f\left(4\right)=4^3-6\cdot4^2+9\cdot4^2+m=m+4\). Do \(m>-4\)\(\Rightarrow f\left(4\right)>0\)
Mà trong khoảng \(\left(3;+\infty\right)\) hàm \(f(x) \) đồng biến, và \(f(c)=0;f(4)>0\) suy ra \(c<4(2)\)
Từ \(\left(1\right);\left(2\right)\) và \(0< a< b< c\) ta có ĐPCM
Tuấn Anh Phan Nguyễn ; Nguyễn Huy Tú ; Ace Legona giúp với !
3 ( a - 1 ) ( a - 3 ) - ( a - b ) ( a - c ) = 0
3 ( b - 1 ) ( b - 3 ) - ( b - a ) ( b - c ) = 0
3 ( c - 1 ) ( c - 3 ) - ( c -a ) ( c - b ) = 0
3 ( a - 1 ) ( a - 3 ) - ( a - b ) ( a - c ) = 0
⇔ 3a² - 12a + 9 - a² - bc + ab + ca = 0
⇔ 2a² - 12a + ( 9 - bc ) + ( ab + ca ) = 0
⇔ 2a ( a - 6 ) + ( ab + ca ) + ( ab + ca ) = 0
⇔ 2a ( - b - c ) + 2a ( b + c ) = 0 ( đúng )
Như vậy:
3( a - 1 ) ( a - 3 ) = ( a - b ) ( a - c )
3( b - 1 ) ( b - 3 ) = ( b - a ) ( b - c )
3( c - 1 ) ( c - 3 ) = ( c - a ) ( c - b )
Mà a < b < c nên (a - b)(a - c) > 0 ; (b - a)(b - c) < 0 và (c - a)(c - b) > 0
Do đó:
( a - 1 ) ( a - 3 ) > 0
( b - 1 ) ( b - 3 ) < 0
( c - 1 ) ( c - 3 ) > 0
Suy ra:
a < 1 hoặc a > 3
1 < b < 3
c < 1 hoặc c > 3
Mặt khác:
a < b < c nên:
3a < a + b + c = 6 < 3c ⇒ a < 2 < c
Kết hợp với kết quả ở trên được:
a < 1 < b < 3 < c
Bây giờ ta sẽ chứng minh a > 0 và c < 4.
Ta cũng có các hằng đẳng thức sau:
a ( a - 3 ) - ( 3 - b ) ( 3 - b ) = 0 ( 1 )
và ( c - 1 ) ( c - 4 ) - ( 1 - a ) ( 1 - b ) ( 2 )
Như vậy:
a ( a - 3 ) = ( 3 - b ) ( 3 - c )
( c - 1 ) ( c - 4 ) = ( 1 - a ) ( 1 - b )
Mà ( 3 - b ) ( 3 - c ) < 0 ( do b < 3 < ) và ( 1 - a ) ( 1 - b ) < 0 ( do a < 1 < b ) nên:
a ( a - 3 ) < 0
( c - 1 )( c - 4 ) < 0
hay:
0 < a < 3 và 1 < c < 4
Kết hợp với cm trên ta đc: 0 < a < 1 < b < 3 < c < 4 • ( điều phải chứng minh )