Giải: \(\left\{{}\begin{matrix}x+ay+a^2z=0\\x+by+b^2z=0\\x+cy+c^2z=0\end{matrix}\right.\)
(a, b, c đôi một khác nhau)
Giải các phương trình sau:
a)\(\left\{{}\begin{matrix}x+y-xy=8\\y+x+yz=15\\z+x+xz=35\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}x^3-3x-2=2-y\\y^3-3y-2=4-2z\\z^3-3z-2=6-3x\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}x^3+\frac{1}{3}y=x^2+x-\frac{4}{3}\\y^3+\frac{1}{4}z=y^2+y-\frac{5}{4}\\z^3+\frac{1}{5}x=z^2+z-\frac{6}{5}\end{matrix}\right.\)
Ai nhanh và đúng thì mình sẽ tick và add friends nhé. Thanks. Please help me!!! PLEASE!!!
Bài 1: Giải hệ phương trình:
\(\left\{{}\begin{matrix}x^2+32y^2=9y^4+\frac{272}{9}\\x^2+y^2+xy+4=3x+4y\end{matrix}\right.\)
Bài 2: Giải hệ phương trình:
\(\left\{{}\begin{matrix}x^2-xy-3y^2+3x-y-1=0\\xy+y^2-x+3y=0\end{matrix}\right.\)
Bài 3: Giải hệ phương trình:
\(\left\{{}\begin{matrix}x^2+3xy-9y^2+23y-17=0\\x^2-2xy+3y^2-6y-3=0\end{matrix}\right.\)
Ai nhanh và đúng mình sẽ cho đúng và thêm bạn bè nhé. Thanks! Làm ơn giúp mình !!! PLEASE !!!
Giải:
a) \(\left\{{}\begin{matrix}3x+2y=1\\5x+3y=-4\end{matrix}\right.\)
b) \(2x^2+2\sqrt{3}x-3=0\)
c) \(9x^4+8x^2-1=0\)
Giải: a, \(x^4-3x^2+31x-30=0\)
b, \(\left\{{}\begin{matrix}x+y+z=2\\2xy-z^2=4\end{matrix}\right.\)
Giải: a, \(\left\{{}\begin{matrix}2x-3y=1\\4x-5y=2\end{matrix}\right.\)
b, \(\left\{{}\begin{matrix}\left(x+1\right)\left(y+1\right)\\x\left(x+1\right)+y\left(y+1\right)+xy=17\end{matrix}\right.\)
Giải:
a) \(\left\{{}\begin{matrix}2x-3y=1\\4x-5y=2\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}\left(x+1\right)\left(y+1\right)=8\\x\left(x+1\right)+y\left(y+1\right)+xy=17\end{matrix}\right.\)
cho các số x,y thỏa mãn\(\left\{{}\begin{matrix}x^3+3y^2-6y+11=0\\x^2+y^2\left(x^2-3\right)-2y-3=0\end{matrix}\right.\)tính giá trị A=x3+y3
Cho các số thực a,b,c thỏa mãn điều kiện \(\left\{{}\begin{matrix}a+b+c>0\\ab+bc+ca>0\\abc>0\end{matrix}\right.\). Hãy chứng minh: a,b,c>0