a)Trừ theo vế của \(pt\left(2\right)\) cho \(pt\left(1\right)\):
\(\left(5x+3y\right)-\left(3x+2y\right)=-4-1\)
\(\Leftrightarrow2x+y=-5\). Khi đó
\(3x+2y=1\Leftrightarrow2\left(2x+y\right)-x=1\)
\(\Leftrightarrow2\cdot\left(-5\right)-x=1\)\(\Leftrightarrow x=-11\)
\(\Rightarrow3x+2y=1\Rightarrow y=\dfrac{1-3x}{2}=\dfrac{1-3\cdot\left(-11\right)}{2}=17\)
Vậy nghiệm hpt \(\left(x;y\right)=\left(-11;17\right)\)
b)\(2x^2+2\sqrt{3}x-3=0\)
\(\Delta=\left(2\sqrt{3}\right)^2-\left(4\cdot2\cdot\left(-3\right)\right)=36\)
\(\Rightarrow x_{1,2}=\dfrac{-2\sqrt{3}\pm\sqrt{36}}{4}\)
c)\(9x^4+8x^2-1=0\)
\(\Leftrightarrow9x^4-x^2+9x^2-1=0\)
\(\Leftrightarrow x^2\left(9x^2-1\right)+\left(9x^2-1\right)=0\)
\(\Leftrightarrow\left(9x^2-1\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(3x+1\right)\left(x^2+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}3x-1=0\\3x+1=0\\x^2+1=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=\pm\dfrac{1}{3}\\x^2+1>0\left(loai\right)\end{matrix}\right.\)