Chứng minh rằng nếu \(a\left(y+z\right)=b\left(z+x\right)=c\left(x+y\right)\) trong đó \(a;b;c\ne0\) và khác nhau thì \(\dfrac{y-z}{a\left(b-c\right)}=\dfrac{z-x}{b\left(c-a\right)}=\dfrac{x-y}{c\left(a-b\right)}\)
a. Cho các số a , b , c khác nhau đôi một và \(\dfrac{a+b}{c}=\dfrac{b+c}{a}=\dfrac{c+a}{b}\)
Tìm giá trị của biểu thức \(H=\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)\)
b. Tìm các cặp số nguyên ( x ; y ) sao cho : \(\left(9x+6xy\right)-2y=-8\)
c. Cho 6 số nguyên dương \(a< b< c< d< m< n\)
Chứng minh rằng : \(\dfrac{a+c+m}{a+b+c+d+m+n}< \dfrac{1}{2}\)
Bài 1: Cho \(\dfrac{a}{b}=\dfrac{c}{d}\) chứng minh rằng :
a, \(\dfrac{a+b}{b}=\dfrac{c+d}{d}\)
b, \(\dfrac{a^2-b^{2^{ }}}{c^2-d^2}=\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}\)
Cho a, b, c>0 và\(\dfrac{2b+c-a}{a}=\dfrac{2c-b+a}{b}=\dfrac{2a+b-c}{c}\)
Tính Q=\(\dfrac{\left(3a-2b\right)\left(3b-2c\right)\left(3c-2a\right)}{\left(3a-c\right)\left(3b-a\right)\left(3c-b\right)}\)
Help!!!
Tính giá trị biểu thức sau:
C=\(\left(\dfrac{a}{b}+1\right).\left(\dfrac{b}{c}+1\right).\left(\dfrac{c}{a}+1\right)\)biết abc khác 0 và a+b+c=0
Đáp án đề thi vòng 1:
Bài 1:
a, \(A=\dfrac{50-\dfrac{4}{13}+\dfrac{2}{15}-\dfrac{2}{17}}{100-\dfrac{8}{13}+\dfrac{4}{15}-\dfrac{4}{17}}=\dfrac{50-\dfrac{4}{13}+\dfrac{2}{15}-\dfrac{2}{17}}{2\left(50-\dfrac{4}{13}+\dfrac{2}{15}-\dfrac{2}{17}\right)}=\dfrac{1}{2}\)
Vậy \(A=\dfrac{1}{2}\)
b, \(B=\dfrac{1}{19}+\dfrac{9}{19.29}+\dfrac{9}{29.39}+...+\dfrac{9}{1999.2009}\)
\(=\dfrac{9}{9.19}+\dfrac{9}{19.29}+\dfrac{9}{29.39}+...+\dfrac{9}{1999.2009}\)
\(=\dfrac{9}{10}\left(\dfrac{10}{9.19}+\dfrac{10}{19.29}+\dfrac{10}{29.39}+...+\dfrac{10}{1999.2009}\right)\)
\(=\dfrac{9}{10}\left(\dfrac{1}{9}-\dfrac{1}{19}+\dfrac{1}{19}-\dfrac{1}{29}+\dfrac{1}{29}-\dfrac{1}{39}+...+\dfrac{1}{1999}-\dfrac{1}{2009}\right)\)
\(=\dfrac{9}{10}\left(\dfrac{1}{9}-\dfrac{1}{2009}\right)\)
\(=\dfrac{200}{2009}\)
Vậy \(B=\dfrac{200}{2009}\)
Bài 2:
a, Giải:
Ta có: \(\left(\dfrac{b}{3c}\right)^3=\dfrac{a}{b}.\dfrac{b}{3c}.\dfrac{c}{9a}=\dfrac{1}{27}\Rightarrow\left(\dfrac{b}{3c}\right)^3=\left(\dfrac{1}{3}\right)^3\)
\(\Rightarrow\dfrac{b}{3c}=\dfrac{1}{3}\Rightarrow b=c\left(đpcm\right)\)
b, Ta có: \(\dfrac{1}{1.3}+\dfrac{1}{2.4}+\dfrac{1}{3.5}+\dfrac{1}{4.6}+...+\dfrac{1}{2013.2015}+\dfrac{1}{2014.2016}\)
\(=\dfrac{1}{2}\left(\dfrac{2}{1.3}+\dfrac{2}{2.4}+\dfrac{2}{3.5}+\dfrac{2}{4.6}+...+\dfrac{2}{2013.2015}+\dfrac{2}{2014.2016}\right)\)
\(=\dfrac{1}{2}\left[\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{2013.2015}\right)+\left(\dfrac{2}{2.4}+\dfrac{2}{4.6}+...+\dfrac{2}{2014.2016}\right)\right]\)
\(=\dfrac{1}{2}\left[\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2013}-\dfrac{1}{2015}\right)+\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+...+\dfrac{1}{2014}-\dfrac{1}{2016}\right)\right]\)
\(=\dfrac{1}{2}\left[\left(1-\dfrac{1}{2015}\right)+\left(\dfrac{1}{2}-\dfrac{1}{2016}\right)\right]\)
\(=\dfrac{1}{2}\left(\dfrac{3}{2}-\dfrac{1}{2015}-\dfrac{1}{2016}\right)=\dfrac{3}{4}-\dfrac{1}{2.2015}-\dfrac{1}{2.2016}< \dfrac{3}{4}\)
\(\Rightarrowđpcm\)
Bài 3:
a, \(VP=\left(x+y\right)\left(x-y\right)=x^2-xy+xy-y^2=x^2-y^2=VT\)
\(\Rightarrowđpcm\)
b, Giải:
a, b, c là độ dài các cạnh của một tam giác nên \(a+b>c,a+c>b,b+c>a\) ( bất đẳng thức tam giác )
\(\Rightarrow a+b-c>0,a-b+c>0,-a+b+c>0\) (*)
Ta có: \(\left\{{}\begin{matrix}a^2-\left(b-c\right)^2\le a^2\\b^2-\left(c-a\right)^2\le b^2\\c^2-\left(a-b\right)^2\le c^2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\left(a+b-c\right)\left(a-b+c\right)\le a^2\\\left(b+c-a\right)\left(b-c+a\right)\le b^2\\\left(c+a-b\right)\left(c-a+b\right)\le c^2\end{matrix}\right.\)
Kết hợp (*) ta có: \(\left[\left(a+b-c\right)\left(a-b+c\right)\left(-a+b+c\right)\right]^2\le\left(abc\right)^2\)
\(\Rightarrow\left(a+b-c\right)\left(a-b+c\right)\left(-a+b+c\right)\le abc\left(đpcm\right)\)
Vậy \(\left(a+b-c\right)\left(a-b+c\right)\left(-a+b+c\right)\le abc\)
Bài 4:
Giải:
Vẽ \(CD\perp BI\) tại D, CD cắt AB tại E
\(\Delta BCE\) cân tại B do BD vừa là đường cao, vừa là đường phân giác
\(\Rightarrow BD\) cũng là đường trung tuyến của \(\Delta BCE\)
\(\Rightarrow BE=BC,CE=2CD\)
Mặt khác: \(\widehat{BIC}=180^o-\left(\widehat{IBC}+\widehat{ICB}\right)\)
\(=180^o-\left(\dfrac{\widehat{ABC}}{2}+\dfrac{\widehat{ACB}}{2}\right)=135^o\)
\(\Rightarrow\widehat{DIC}=45^o\Rightarrow\Delta DIC\) vuông cân tại D
Do đó \(CI^2=DI^2+CD^2=2CD^2\)
Ta có: \(AE=BE-AB=BC-AB\)
\(\Delta ACE\) vuông tại A \(\Rightarrow CE^2=AE^2+AC^2\)
\(\Rightarrow4CD^2=\left(BC-AB\right)^2+AC^2\)
\(\Rightarrow2CI^2=\left(BC-AB\right)^2+AC^2\)
\(\Rightarrow CI^2=\dfrac{\left(BC-AB\right)^2+AC^2}{2}\left(đpcm\right)\)
Vậy \(CI^2=\dfrac{\left(BC-AB\right)^2+AC^2}{2}\)
Bài 5:
a, Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(\left|x-2013\right|+\left|x-2016\right|=\left|x-2013\right|+\left|2016-x\right|\ge x-2013+2016-x=3\)
Kết hợp với giả thiết, ta có:
\(\left|x-2014\right|+\left|y-2015\right|\le0\)
Điều này chỉ xảy ra khi:
\(\left\{{}\begin{matrix}\left|x-2014\right|=0\\\left|y-2015\right|=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2014\\y=2015\end{matrix}\right.\)
Thay vào \(\left|x-2013\right|+\left|x-2014\right|+\left|y-2015\right|+\left|x-2016\right|=3\), ta thấy thỏa mãn
Vậy \(x=2014,y=2015\)
b, Giải:
Giả sử không có hai số nào trong 2013 số tự nhiên \(a_1,a_2,...,a_{2013}\) bằng nhau
Do đó, ta có: \(\dfrac{1}{a_1}+\dfrac{1}{a_2}+...+\dfrac{1}{a_{2013}}\le1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2013}< 1+\dfrac{1}{2}+\dfrac{1}{2}+...+\dfrac{1}{2}=1+1006=1007\)
Mâu thuẫn với giả thiết
Vậy ít nhất hai trong 2013 số tự nhiên đã cho bằng nhau.
Tính tích các đơn thức rồi cho biết hệ số và bậc của đơn thức đối với tập hợp các biến số (a,b,c là hằng)
\(\left[\dfrac{-1}{2}\left(a-1\right)x^3y^3z^4\right]^5;\left(a^2b^2xy^2z^{n-1}\right)\left(-b^3cx^4z^{7-n}\right);\left(\dfrac{-8}{15}a^3x^3y\right).\left(\dfrac{-5}{4}ax^5y^2z\right)\)
ĐỀ 2:
1. Tính:
A. \(\left(-\dfrac{2}{3}\right)^2+\left(-\dfrac{7}{8}\right)+\left(-\dfrac{11}{12}\right)\)
B. \(\left(\dfrac{-1}{3}\right)^2:\dfrac{1}{6}-2.\left(\dfrac{-1}{2}\right)^3\)\
C. \(\dfrac{-1}{5}-\left(\dfrac{1}{2}+\dfrac{3}{4}\right)^2:\dfrac{5}{8}\)
D. \(\left|\dfrac{-3}{2}+1,2\right|+1\dfrac{2}{3}:6\)
2. Tìm x, biết:
a. \(\dfrac{2}{3}x-\dfrac{1}{3}x=\dfrac{5}{12}\)
b. \(\left(x-\dfrac{12}{7}\right):1\dfrac{1}{5}=\dfrac{4}{7}\)
c. \(\dfrac{2}{5}+\left|x+1\right|=\dfrac{3}{4}\)
3. Tìm x, y biết:
a. \(\dfrac{x}{18}=\dfrac{y}{15}\)và x - y = -30
b. 7x = 9x và 10x - 8x = 68
c. \(\left(x-\dfrac{1}{2}\right)^{50}+\left(y+\dfrac{1}{3}\right)^{40}=0\)
* Lm nhanh nha
Tìm các số hữu tỷ x,biết rằng:
a,\(\left(x-\dfrac{5}{3}\right):-1\dfrac{3}{4}=0\)
b,\(\left(x-\dfrac{1}{5}\right)\left(1\dfrac{3}{5}+2x\right)=0\)
c,\(\left(x-\dfrac{4}{7}\right):\left(x+\dfrac{1}{2}\right)>0\)
d,(2x-3):\(\left(x+1\dfrac{3}{4}\right)< 0\)