Ta luôn có: \(\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2\ge0\)
\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2ac+2bc\)
\(\Leftrightarrow3a^2+3b^2+3c^2\ge a^2+b^2+c^2+2ab+2ac+2bc\)
\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)
\(\Leftrightarrow a^2+b^2+c^2\ge\frac{1}{3}\left(a+b+c\right)^2\)
\(\Rightarrow M=a^2+b^2+c^2\ge\frac{1}{3}\left(\frac{3}{2}\right)^2=\frac{3}{4}\)
\(\Rightarrow M_{min}=\frac{3}{4}\) khi \(a=b=c=\frac{1}{2}\)
Áp dụng BĐT:
\(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}=\frac{\left(\frac{3}{2}\right)^2}{3}=\frac{3}{4}\)
\(\Rightarrow M_{min}=\frac{3}{4}\) khi \(a=b=c=\frac{1}{2}\)