a) x và y tỉ lệ nghịch
=>\(x=\frac{a}{y}\) (1)
y và z tỉ lệ nghịch
=> \(y=\frac{b}{z}\) (2)
từ (1)và (2) => \(x=\frac{a}{\frac{b}{z}}=\frac{a}{b}.z\)
vậy x và y là 2 đại lượng tỉ lệ thuận theo hệ số tỉ lệ là \(\frac{a}{b}\)
b) x và y tỉ lệ nghịch
=> \(x=\frac{a}{y}\) (1)
y và z tỉ lệ thuận
=> y = bz (2)
từ (1) và (2) => \(x=\frac{a}{bz}\) hay xy=\(\frac{a}{b}\)
vậy x và z là 2 đại lượng tỉ lệ nghịch theo hệ số tỉ lệ là \(\frac{a}{b}\)
a)
Do x và y là hai đại lượng tỉ lệ nghịch
nên: x = \(\frac{a}{y}\)
Do y và z là hai đại lượng tỉ lệ nghịch
nên : y = \(\frac{b}{z}\)
=> \(x=\frac{a}{\frac{b}{z}}=\frac{a}{b}.z\)
Vậy x và z là hai đại lượng tỉ lệ thuận theo hệ số tỉ lệ là \(\frac{a}{b}\)
b)
Do x và y là hai đại lượng tỉ lệ nghịch
nên: \(x=\frac{a}{b}\)
Do y và z là hai đại lượng tỉ lệ thuận
nên : \(y=b.z\)
=> \(x=\frac{a}{b.z}\Rightarrow x=\frac{\frac{a}{b}}{z}\)
Vậy x tỉ lệ nghịch với z theo hệ số tỉ lệ là \(\frac{a}{b}\)
a) Ta có: x và y tỉ lệ nghịch => \(x=\frac{a}{y}\)
và y và z cũng tỉ lệ nghịch => \(y=\frac{a}{z}\)
=> \(x=\frac{a}{\frac{a}{z}}\Leftrightarrow a\times\frac{z}{a}=z\).
b) Ta có x và y tỉ lệ nghịch => \(x=\frac{a}{y}\)
và y và z tỉ lệ thuận => y= kz
=> \(x=\frac{a}{kz}\Leftrightarrow\frac{a}{k}\times z\) .