Ta có: \(a^2+b^2\ge2\sqrt{a^2b^2}=2ab\) (Theo BĐT cô si;a,b dương)
\(\Leftrightarrow2\ge2ab\Rightarrow ab\le1\) (Vì \(a^2+b^2=2\))
\(\Rightarrow4034ab\le4034\Rightarrow4032+4034ab\le8066\) (1)
Lại có: \(M=\dfrac{a^3}{2016a+2017b}+\dfrac{b^3}{2017a+2016b}\)
\(\Leftrightarrow M=\dfrac{a^4}{2016a^2+2017ab}+\dfrac{b^4}{2017ab+2016b^2}\) (2)
Áp dụng bất đẳng thức cô si dạng engel vào (2) được:
\(M\ge\dfrac{\left(a^2+b^2\right)^2}{2016a^2+2017ab+2017ab+2016b^2}=\dfrac{\left(a^2+b^2\right)^2}{2016\left(a^2+b^2\right)+4034ab}\)
\(\Leftrightarrow M\ge\dfrac{2^2}{2016\cdot2+4034ab}=\dfrac{4}{4032+4034ab}\) ( vì \(a^2+b^2=2\)) (3)
Từ (1);(3)\(\Rightarrow M\ge\dfrac{4}{8066}=\dfrac{2}{4033}\)
Vậy min \(M=\dfrac{2}{4033}\) khi a=b=1