Bài 3: Phương trình bậc hai một ẩn

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Uyên Nguyễn

Cho 2 số dương a và b thỏa mãn \(\dfrac{1}{a}+\dfrac{1}{b}=2\) tìm giá trị lớn nhất của biểu thức Q=\(\dfrac{1}{a^4+b^2+2ab^2}+\dfrac{1}{b^4+a^2+2ba^2}\)

Lightning Farron
26 tháng 4 2017 lúc 21:50

Từ \(\dfrac{1}{a}+\dfrac{1}{b}=2\Rightarrow\dfrac{a}{ab}+\dfrac{b}{ab}=2\Rightarrow\dfrac{a+b}{ab}=2\)

\(\Rightarrow2ab=a+b\ge2\sqrt{ab}\)\(\Rightarrow\left\{{}\begin{matrix}ab\ge1\\a+b\ge2\sqrt{ab}\ge2\end{matrix}\right.\)

Áp dụng BĐT AM-GM ta có:

\(a^4+b^2+2ab^2\ge2\sqrt{a^4b^2}+2ab^2=2a^2b+2ab^2\)

\(b^4+a^2+2a^2b\ge2\sqrt{a^2b^4}+2a^2b=2ab^2+2a^2b\)

\(\Rightarrow Q\le\dfrac{1}{2a^2b+2ab^2}+\dfrac{1}{2ab^2+2a^2b}\le\dfrac{1}{4}+\dfrac{1}{4}=\dfrac{1}{2}\)

Đẳng thức xảy ra khi \(a=b=1\)


Các câu hỏi tương tự
Thảo Xấu Gái
Xem chi tiết
Nguyễn Lê Nhật Linh
Xem chi tiết
Uyên Nguyễn
Xem chi tiết
lan lê
Xem chi tiết
Kim Duy
Xem chi tiết
nguyễn ngọc trang
Xem chi tiết
NGUYEN THI DIEP
Xem chi tiết
Trai Vô Đối
Xem chi tiết
oOoLEOoOO
Xem chi tiết