\(A=\left(a^2\right)^3+\left(b^2\right)^3=\left(a^2+b^2\right)^3-3a^2b^2\left(a^2+b^2\right)\)
\(A=1-3a^2b^2=1-3a^2\left(1-a^2\right)\)
\(A=3a^4-3a^2+1=3\left(a^2-\frac{1}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)
\(\Rightarrow A_{min}=\frac{1}{4}\) khi \(a^2=\frac{1}{2}\)
Mặt khác do \(a^2=1-b^2\le1\Rightarrow a^2-1\le0\Rightarrow a^2\left(a^2-1\right)\le0\)
\(\Rightarrow A=3a^2\left(a^2-1\right)+1\le1\)
\(\Rightarrow A_{max}=1\) khi \(\left[{}\begin{matrix}a^2=0\\a^2=1\end{matrix}\right.\)