Cho hai đa thức : \(f\left(x\right)=\left(x-1\right).\left(x+3\right)\) và \(g\left(x\right)=x^3-ax^{2\:}+bx-3\)
Xác định hệ số a ; b của đa thức g(x) biết nghiệm của đa thức f (x) cũng là nghiệm của đã thức g (x)
Cho 2 đa thức sau :
\(f\left(x\right)=\left(x-1\right)\left(x+2\right)\)
\(g\left(x\right)=x^3+ax^{2\:}+bx+2\)
Xác định a và b biết nghiệm của đa thức f(x) cũng là nghieemj của đa thức g(x)
a)Tìm các số a,b biết đa thức \(f\left(x\right)=ax+b\)
và \(f\left(1\right)=1;f\left(x\right)=4\)
b)Chứng tỏ rằng đa thức f(x) có ít nhất 2 nghiệm biết :
x . f(x+1) = (x+3).f(x)
Bài 1: a) Chứng tỏ rằng đa thức \(f\left(x\right)=3x^3+4x^2+2x+1\) có một trong các nghiệm bằng -1
b) Chứng tỏ rằng đa thức \(f\left(x\right)=ax^3+bx^2+cx+d\) có một trong các nghiệm bằng -1 nếu a+c=b+d
Cho các đa thức: P(x)= 4x2+x-5 và Q(x)= 5x3-2x2+2x-1
a. Tính P(x) + Q(x)
b. Tìm đa thức H(x) thoả H(x)-P(x)= ax với a là hằng số
c. Xác định a để đa thức H(x) có nghiệm là 2
Bài 1: a) Chứng tỏ rằng đa thức \(f\left(x\right)=5x^3-7x^2+4x-2\) có một trong các nghiệm bằng 1.
b)Chứng tỏ rằng đa thức \(f\left(x\right)=ax^3+bx^2+cx+d\) có một trong các nghiệm bằng 1 nếu a+b+c+d=0.
Cho đa thức \(M\left(x\right)=-ax^2+6x-8\)
Tìm hệ số a biết rằng đa thức M(x) có một nghiệm là -2
a, cho đa thức \(f\left(x\right)=ax^2+bx+c\) . CnMR : nếu f(x) nhận 1 và -1 là nghiệm thì a và c là 2 số đối nhau
b, tìm đa thức bậc hai f(x) biết : f(x)-f(x-1)=x . Từ đó áp dụng tính tổng S=1+2+3+...+n
Cho đa thức \(f\left(x\right)\) = \(2x^6+3x^2+5x^3-2x^2+4x^4-x^3+1-4x^3-x^4\)
a, Thu gọn đa thức \(f\left(x\right)\)
b, Tính \(f\left(-1\right)\)
*c, C/tỏ đa thức \(f\left(x\right)\) không có nghiệm