cho biểu thức P=\(\left[\dfrac{\left(x-1\right)^2}{3x+\left(x-1\right)^2}-\dfrac{1-2x^2+4x}{x^3-1}+\dfrac{1}{x-1}\right]\):\(\dfrac{2x}{x^3+x}\)
a) Rút gọn biểu thức P
b) Với x bao nhiêu thì P đạt GTNN
cho biểu thức: A=\(\left(\dfrac{1}{x-2}+\dfrac{2x}{x^2-4}+\dfrac{1}{x+2}\right).\left(\dfrac{2}{x}-1\right)\)
a)rút gọn A
b)tìm x để A=1
cho biểu thức: A=\(\left(\dfrac{1}{x-2}+\dfrac{2x}{x^2-4}+\dfrac{1}{x+2}\right).\left(\dfrac{2}{x}-1\right)\)
a)rút gọn A
b)tìm x để A=1
cho biểu thức P=\(\left[\dfrac{\left(x-1\right)^2}{3x+\left(x-1\right)^2}-\dfrac{1-2x^2+4x}{x^3-1}+\dfrac{1}{x-1}\right]:\dfrac{2x}{x^3+x}\)
Cho biểu thức: \(M=\left(\dfrac{x^2-1}{x^4-x^2+1}-\dfrac{1}{x^2+1}\right).\left(x^4+\dfrac{1-x^4}{1+x^2}\right)\)
a) Rút gọn.
b) Tìm GTNN của M.
Tìm GTNN của: \(C=\left(x^2+\dfrac{1}{y^2}\right).\left(y^2+\dfrac{1}{x^2}\right)\)
Cho biểu thức: \(A=\dfrac{x^3-3}{\left(x+1\right).\left(x-3\right)}-\dfrac{2.\left(x-3\right)}{x+1}-\dfrac{x+3}{x-3}\). Tìm giá trị nguyên của x để A có giá trị nguyên
Chúng minh đẳng thức:
\(\dfrac{2}{x\left(x+1\right)}+\dfrac{2}{\left(x+1\right)\left(x+2\right)}+\dfrac{2}{\left(x+2\right)\left(x+3\right)}+...+\dfrac{2}{\left(x+2014\right)\left(x+2015\right)}=\dfrac{4030}{x\left(x+2015\right)}\)
Cho biểu thức \(P=\left(\dfrac{4x}{2+x}+\dfrac{8x^2}{4-x^2}\right):\left(\dfrac{x-1}{x^2-2x}-\dfrac{2}{x}\right)\). Tìm các giá trị của x để P<0