Phương trình 2Al+6HCl->2AlCl3+3H2
Fe+2HCl->FeCl2+H2
Gọi a,b là mol Al và mol Fe
mol H2=8,96/22,4=0,4(mol)
Ta có hệ phương trình:
1,5a+b=0,4(1) ;27a+56b=11(2)
Từ đó suy ra a,b
a)\(n_{H_2}=\frac{8,96}{22,4}=0,4\left(mol\right)\)
PTHH: 2Al + 6HCl ---> 2AlCl3 + 3H2
a ----------------------------> 1,5a (mol)
Fe + 2HCl ---> FeCl2 + H2
b ------------------------- > b (mol)
=>\(\left\{{}\begin{matrix}27a+56b=11\\1,5a+b=0,4\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}a=0,2\\b=0,1\end{matrix}\right.\left(mol\right)\) =>\(\left\{{}\begin{matrix}m_{Al}=0,2.27=5,4\\m_{Fe}=0,1.56=5,6\end{matrix}\right.\left(g\right)\)
=>\(\left\{{}\begin{matrix}\%m_{Al}=\frac{5,4}{11}.100\%=49,09\%\\\%m_{Fe}=\frac{5,6}{11}.100\%=50,91\%\end{matrix}\right.\)
PTHH:
2Al + 6HCl ---> 2AlCl3 + 3H2
0,2 ----> 0,6 -----> 0,2 (mol)
Fe + 2HCl ---> FeCl2 + H2
0,1 --> 0,2----> 0,1 (mol)
=> \(n_{HCl}=0,6+0,2=0,8\left(mol\right)\)
=> \(m_{HCl}=0,8.36,5=29,2\left(g\right)\)
c) \(\left\{{}\begin{matrix}m_{AlCl_3}=0,2.133,5=26,7\left(g\right)\\m_{FeCl_2}=0,1.127=12,7\left(g\right)\end{matrix}\right.\)