Do a ≤ 1⇒a2 ≤1 và
(1−a2)(1−b) ≤0 ⇒1+a2b2 ≥ a2+b
Mà 0 ≤ a , b ≤ 1 ⇒a2≥ a3 ,b2≥ b3
⇒ 1+a2b2 ≥ a3 + b3
Tương tự rồi cộng lại ta có được điều phải chứng minh
Do a ≤ 1⇒a2 ≤1 và
(1−a2)(1−b) ≤0 ⇒1+a2b2 ≥ a2+b
Mà 0 ≤ a , b ≤ 1 ⇒a2≥ a3 ,b2≥ b3
⇒ 1+a2b2 ≥ a3 + b3
Tương tự rồi cộng lại ta có được điều phải chứng minh
cho \(0\le a,b,c\le1\)
cmr:\(2a^3+2b^2+2c^3\le3+a^2b+b^2c+c^2a\)
1. cho \(0< a\le b\le c\) . Cmr: \(\frac{2a^2}{b^2+c^2}+\frac{2b^2}{c^2+a^2}+\frac{2c^2}{a^2+b^2}\le\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\)
2. cho \(a,b,c\ge0\). cmr: \(a^2+b^2+c^2+3\sqrt[3]{\left(abc\right)^2}\ge2\left(ab+bc+ca\right)\)
3. \(a,b,c>0.\) Cmr: \(\sqrt{\left(a^2b+b^2c+c^2a\right)\left(ab^2+bc^2+ca^2\right)}\ge abc+\sqrt[3]{\left(a^3+abc\right)\left(b^3+abc\right)\left(c^3+abc\right)}\)
4. \(a,b,c>0\). Tìm Min \(P=\left(\frac{a}{a+b}\right)^4+\left(\frac{b}{b+c}\right)^4+\left(\frac{c}{c+a}\right)^4\)
Cho a,b,c > 0 có a+b+c \(\le3\)
CMR : \(\dfrac{a}{\sqrt{2a^2+b^2}+\sqrt{3}}+\dfrac{b}{\sqrt{2b^2+c^2}\sqrt{3}}+\dfrac{c}{\sqrt{2c^2+a^2}+\sqrt{3}}\le\dfrac{\sqrt{3}}{2}\)
Cho a,b,c>0 và abc=1 CMR \(\frac{a^4\left(b^2+c^2\right)}{b^3+2c^3}+\frac{b^4\left(a^2+c^2\right)}{c^3+2a^3}+\frac{c^4\left(a^2+b^2\right)}{a^3+2b^3}\ge2\)
1.\(\left\{{}\begin{matrix}a,b,c>0\\ab+bc+ca=3\end{matrix}\right.\) Cmr: \(\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}\ge\frac{3}{2}\)
2.\(a,b,c>0\). Cmr: \(\frac{ab^2}{a^2+2b^2+c^2}+\frac{bc^2}{b^2+2c^2+a^2}+\frac{ca^2}{c^2+2a^2+b^2}\le\frac{a+b+c}{4}\)
3. \(a,b,c>0\). Cmr: \(\frac{ab}{a+3b+2c}+\frac{bc}{b+3c+2a}+\frac{ca}{c+3a+2b}\le\frac{a+b+c}{6}\)
Cho
\(\sqrt{a}+\sqrt{b}+\sqrt{c}=\sqrt{3}\)
\(\sqrt{\left(a+2b\right)\left(a+2c\right)}+\sqrt{\left(b+2a\right)\left(b+2c\right)}+\sqrt{\left(c+2a\right)\left(c+2b\right)}=3\)
Hãy tính \(\left(2\sqrt{a}+3\sqrt{b}-4\sqrt{c}\right)^2\)
Cho a,b,c>0 và abc=1. CMR
A = \(\dfrac{a}{2a^3+1}+\dfrac{b}{2b^3+1}+\dfrac{c}{2c^3+1}\le1\)
Cho a,b,c > 0. CMR:
\(2\left(\frac{a}{b+2c}+\frac{b}{c+2a}+\frac{c}{a+2b}\right)\ge1+\frac{b}{b+2a}+\frac{c}{c+2b}+\frac{a}{a+2c}\)
\(\left\{{}\begin{matrix}a,b,c\ge0\\a+b+c=2\end{matrix}\right.\) Cmr: \(a^2b^2+b^2c^2+c^2a^2-2abc\le1\)