Làm biếng gõ lại:
Câu hỏi của dbrby - Toán lớp 10 | Học trực tuyến
Làm biếng gõ lại:
Câu hỏi của dbrby - Toán lớp 10 | Học trực tuyến
Cho \(A_n=\dfrac{1}{\left(2n+1\right)\sqrt{2n-1}},\forall n\in N\text{*}\)
CMR: \(A_1+A_2+...+A_n< 1\)
cmr:
\(\dfrac{1}{2}.\dfrac{3}{4}.\dfrac{5}{6}....\dfrac{2n-1}{2n}\le\dfrac{1}{\sqrt{3n+1}}\left(\forall n\ge1\right)\)
1.Rút gọn
\(A=\left(\frac{2\sqrt[3]{2xy}}{x^2y^2-\sqrt[3]{4}}+\frac{xy-\sqrt[3]{2}}{2xy+2\sqrt[3]{2}}\right)\cdot\frac{2xy}{xy+\sqrt[3]{2}}-\frac{xy}{xy-\sqrt[3]{2}}\)
2. Chứng minh
\(\frac{1}{4+1^4}+\frac{3}{4+3^4}+...+\frac{2n-1}{4+\left(2n-1\right)^4}=\frac{n^2}{4n^2+1}\)
Tính các tổng sau:
A=\(\dfrac{1}{2.5}+\dfrac{1}{5.8}+\dfrac{1}{8.11}+.....+\dfrac{1}{\left(3n-1\right)\left(3n+2\right)}\)
B=\(\dfrac{1}{1.3.5}+\dfrac{1}{3.5.7}+\dfrac{1}{5.7.9}+....+\dfrac{1}{\left(2n-1\right)\left(2n+1\right)\left(2n+3\right)}\)
C=\(\sqrt{1+\dfrac{1}{1^2}+\dfrac{1}{2^2}}+\sqrt{1+\dfrac{1}{2^2}+\dfrac{1}{3^2}}+\sqrt{1+\dfrac{1}{3^2}+\dfrac{1}{4^2}}+....+\sqrt{1+\dfrac{1}{2018^2}+\dfrac{1}{2019^2}}\)
tính S=\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{1}+\sqrt{1+3}}+\frac{1}{\sqrt{1}+\sqrt{1+3}+\sqrt{1+3+5}}+...+\frac{1}{\sqrt{1}+\sqrt{1+3}+\sqrt{1+3+5+...+\left(2n+1\right)}}\)
Cho dãy un định bởi:
u1=\(\dfrac{1}{1.3.5}\) ; \(u_2=\dfrac{1}{1.3.5}+\dfrac{1}{3.5.7}\) ; \(u_3=\dfrac{1}{1.3.5}+\dfrac{1}{3.5.7}+\dfrac{1}{5.7.9}\)
\(u_n=\dfrac{1}{1.3.5}+\dfrac{1}{3.5.7}+\dfrac{1}{5.7.9}+....+\dfrac{1}{\left(2n-1\right)\left(2n+1\right)\left(2n+3\right)}\)
a) Lập quy trình ấn phím để tính số hạng tổng quát.
b) Tính đúng giá trị của u50, u60
c) tính đúng u1002
cmr:
\(\dfrac{1}{9}+\dfrac{1}{16}+...+\dfrac{1}{\left(2n+1\right)^2}< \dfrac{1}{4}\left(\forall n\ge1\right)\)
1. Tìm tất cả các số tự nhiên n thỏa mãn 2n+1,3n+1 là các số chính phương và 2n+9 là số nguyên tố
2. Tìm tất cả các cặp số nguyên dương (m,n) để \(2^m\cdot5^n+25\) là số chính phương
3. a) cho a,b,c thỏa mãn \(2\left(a^2+ab+b^2\right)=3\left(3-c^2\right)\). Tìm max, min \(P=a+b+c\)
b) \(\left\{{}\begin{matrix}a,b,c>0\\a+b+c=1\end{matrix}\right.\). Cmr: \(6\left(ab+bc+ca\right)+a\left(a-b\right)^2+b\left(b-c\right)^2+c\left(c-a\right)^2\le2\)
c) \(\left\{{}\begin{matrix}x,y,z>0\\x+y+z=3\end{matrix}\right.\). Tìm min \(P=\frac{1}{2xy^2+1}+\frac{1}{2yz^2+1}+\frac{1}{2zx^2+1}\)
d) \(\left\{{}\begin{matrix}a,b,c\ge0\\a+b+c=3\end{matrix}\right.\). Tìm max \(P=a\sqrt[3]{b^3+1}+b\sqrt[3]{c^3+1}+c\sqrt[3]{a^3+1}\)
e) \(\left\{{}\begin{matrix}-1\le a,b,c\le1\\0\le x,y,z\le1\end{matrix}\right.\). Max \(P=\left(\frac{1-a}{1-bz}\right)\left(\frac{1-b}{1-cx}\right)\left(\frac{1-c}{1-ay}\right)\)
f) \(\left\{{}\begin{matrix}a,b>0\\a+2b\le3\end{matrix}\right.\). Max \(P=\frac{1}{\sqrt{a+3}}+\frac{1}{\sqrt{b+3}}\)
g) \(\left\{{}\begin{matrix}x,y,z>0\\xyz=x+y+z+2\end{matrix}\right.\). Max \(P=\frac{1}{\sqrt{x^2+2}}+\frac{1}{\sqrt{y^2+2}}+\frac{1}{\sqrt{z^2+2}}\)
h) \(a,b,c>0\). Tìm min \(P=\frac{1}{\left(a+b\right)^2}+\frac{1}{\left(a+c\right)^2}+2\sqrt{a^2+bc}\)
CMR: \(x=\frac{\left(n+1\right)\left(n+2\right)\left(n+3\right)...\left(2n-1\right)\cdot2n}{2^n}\) là một số nguyên