Ta có: \(\left|3x-6\right|=x+2\)
+) TH1: \(3x-6\ge0\Rightarrow3x\ge6\Rightarrow x\ge2\)
Khi đó \(3x-6=x +2\)
\(\Rightarrow3x-x=6+2\)
\(\Rightarrow2x=8\)
\(\Rightarrow x=4\) (t/m)
+) TH2: \(3x-6< 0\Rightarrow3x< 6\Rightarrow x< 2\)
Khi đó \(-3x+6=x+2\)
\(\Rightarrow-3x-x=-6+2\)
\(\Rightarrow-4x=-4\)
\(\Rightarrow x=1\) (t/m)
Vậy \(\left[\begin{matrix}x=4\\x=1\end{matrix}\right.\).