Ôn tập: Bất phương trình bậc nhất một ẩn

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Bảo

Câu 1: Tìm GTLN và GTNN của A = x2 - x + 1

Câu 2: Giải pt

a) 2 / x- 1 + 2 / x + 1 - 2x2 +2 / x2 -1 = 0

b) 2x/ x + 2 + 2/ x -2 = x2 +4 / x2 - 4

Câu 3 : Cho tam giác ABC, AB < AC, BD là phân giác, CE là đường cao.

a) Cm tam giác ABD đồng dạng ACE

b) tam giác ADE đồng dạng ABC

c) Tia DE cắt CB tại I. Cm tam giác IBE đồng dạng IDC

d) Gọi O là trug điểm của BC. Cm ID . IE = OI2 - OC2

Câu 4: Cho tam giác ABC vuông tại A. Đường cao AH

a) Cm tam giác AHB đồng dạng CHA

b) Kẻ phân giác AD của tam giác CHA và BK của tam giác ABC ( D thuộc AC, K thuộc AC) . BK cắt AH ở E, cắt AD ở F. Cm tam giác AEF đồng dạng BEH

c) Chứng minh KD song song AH

d) Cm EH / AD = KD/ BC

qwerty
6 tháng 6 2017 lúc 21:59

Bài 1: \(A=x^2-x+1\)

\(=x^2+\dfrac{1}{2}x+\dfrac{1}{2}x+\dfrac{1}{2}-\dfrac{1}{2}-\dfrac{1}{4}+1\)

\(=x\left(x+\dfrac{1}{2}\right)+\dfrac{1}{2}\left(x+\dfrac{1}{2}\right)-\dfrac{3}{4}\)

\(=\left(x+\dfrac{1}{2}\right)\left(x+\dfrac{1}{2}\right)+\dfrac{3}{4}\)

\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

=> \(\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>\dfrac{3}{4}\)

Vậy GTNN của biểu thức \(A\)\(\dfrac{3}{4}\)

Thắng Tran Duc
19 tháng 4 2018 lúc 23:05

Bài 1: A= x2-x+1

A= x2-x+1

A= x2-2*1/2*x+1/4-1/4+1

A= (x-1/2)2+3/4

vì (x-1/2)2>=0 với mọi x

=> (x-1/2)2+3/4>=3/4 với mọi x

dấu bằng xảy ra <=> x-1/2=0

<=> x =1/2

vậy min A= 3/4 <=> x=1/2


Các câu hỏi tương tự
2012 SANG
Xem chi tiết
Linh
Xem chi tiết
Nguyễn Mỹ Linh
Xem chi tiết
Linh
Xem chi tiết
Linh
Xem chi tiết
Thao Nguyen
Xem chi tiết
Natsumi Himiya
Xem chi tiết
nguyen thao
Xem chi tiết
GTV Bé Cam
Xem chi tiết