a) Xét \(\Delta FEC\) vuông tại F và \(\Delta FBD\) vuông tại F ,có: \(\widehat{FEC}\)=\(\widehat{FBD}\)(cùng phụ \(\widehat{FCE}\))
\(\Rightarrow \Delta FEC \) đồng dạng với \(\Delta FBD\)(g.n)
b) Xét \(\Delta AED\) vuông tại A và \(\Delta HAC\) vuông tại H có: \(\widehat{ADE}=\widehat{HCA}\)(cùng phụ \(\widehat{ABC}\))
\(\Rightarrow \Delta AED \) đồng dạng với \(\Delta HAC\)(g.n)
c) Ta có \(\dfrac{FE}{FB}=\dfrac{FC}{FD}\)(\(\Delta FEC \) đồng dạng với \(\Delta FBD\))
Mà:\(FB=FC;FD=FE+ED\)
\(\Rightarrow \dfrac{EF}{FB}=\dfrac{FB}{FE+ED} \Rightarrow FB^2 =EF.(FE+ED)\)
\(\Rightarrow FB= \sqrt {4.(4+5)=6=FC} \Rightarrow BC= FB+FC=6+6=12cm\)
Xét \(\Delta ABC \) vuông tại A, có:
\(BC^2=AB^2+AC^2\)(Áp dụng định lý Py-ta-go)
\(\Rightarrow 12^2 =6^2+AC^2 \Rightarrow AC=\sqrt{12^2-6^2}=6\sqrt3(cm)\)
Xét \(\Delta CAH\) vuông tại H và \(\Delta CBA\) vuông tại A, có:\(\widehat{ECF}\) chung
\(\Rightarrow\)\(\Delta CAH\) vuông tại H đồng dạng \(\Delta CBA\) vuông tại A(g.n)
\(\Rightarrow \dfrac{CA}{CB}=\dfrac{AH}{BA}=k \Rightarrow \dfrac{6 \sqrt3}{12}=\dfrac{AH}{6} \Rightarrow AH= \dfrac{6 \sqrt{3.6}}{12}=3\sqrt3(cm)\)