1. Cho n là số nguyên \(⋮\) cho 3 . CM : M = \(3^{2n}+3^n+1⋮3\)
2. Cho các số dương a,b,c và abc=1 . CM : ( a + 1 )( b + 1 )( c + 1 ) \(\ge\) 8
3 . Cho hai số thực x , y thỏa mãn \(\dfrac{4}{x^2}+\dfrac{5}{y^2}\ge9\)
Tìm GTNN của biểu thức : \(Q=2x^2+\dfrac{6}{x^2}+3y^2+\dfrac{8}{y^2}\)
chứng minh rằng: 1/(4+1^4)+3/(4+3^4)+...+(2n-1)/(4+(2n-1)^4)=n^2/4n^2+1 với mọi n nguyên dương
Tìm số nguyên n sao cho:
a, n2 + 2n - 4 chia hết cho 11
b, 2n3 + n2 + 7n +1 chia hết cho 2n - 1
c, n3 - 2 chia hết cho n - 2
d, n3 - 3n2 - 3n - 1 chia hết cho n2 + n + 1
e, n4 - 2n3 + 2n2 - 2n + 1 chia hết cho n4 - 1
1/ tìm n để
a)2^n-1 chia hết cho 7
b)3^n-1 chia hết cho 8
c)3^(2n+3) + 2^(4n+1) chia hết cho 25
d)5^n-2^n chia hết cho 9
2/ Số nào trong đây là số chính phương
M = 1992^2 + 1993^2 + 1994^2
N = 1992^2 + 1993^2 + 1994^2 + 1995^2
3/ tìm chữ số tận cùng của
a) 243^6; 167^2010
b) (7^9)^9; (14^14)^14; [(4^5)^6]^6
c) 3^102; (7^3)^5; 3^20+2^30+7^15-8^16
4/ tìm 2,3 chữ số tân cùng của 3^555; (2^7)^9
5/ tìm số dư khi chia các số sau cho 2,5
a) 3^8; 14^15+15^14
b) 2009^2010-2008^2009
c)tìm số dư khi chia 92^94 cho 15
6/ a)CM 2^2^(4n+1)+1 chia hết cho 11
b) 2^28-1 chia hết cho 29
7/ tìm số dư klhi chia A=20^11+22^12+1996^2009 cho 7
tìm cacscawpj số nguyên (a;b) sao cho \(\dfrac{a^2}{2ab^2-b^3+1}\) là 1 số nguyên dương
CMR
\(\dfrac{1}{4+1^4}+\dfrac{3}{4+3^4}+....\dfrac{2n-1}{4+\left(2n-1\right)^4}=\dfrac{n^2}{4n^2+1}\)
với mọi n nguyên dương
1 ) Cho a , b , c là các số dương thỏa mãn : \(\left(1+\frac{a}{b}\right).\left(1+\frac{b}{c}\right).\left(1+\frac{c}{a}\right)=8\)
Tính giá trị của biểu thức \(P=\frac{a^3+b^3+c^3}{abc}\)
2 . Cho a , b , c là 3 số dương thỏa mãn : \(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}=2\) . Tìm giá trị lớn nhất của biểu thức :
\(Q=abc\)
CM các số sau là số chính phương:
A=11...1(2n chữ số 1)+44..4(n chữ số 4)+1
B=11...1(2n chữ số 1)+ 11...1(n+1 chữ số 1)+ 66...6(n chữ số 6) +8
C=44...4(2n chữ số 4)+22...2(n+1 chữ số 2)+ 88...8(n chữ số 8) +7
D=\(\overline{\text{22499...9(n-2 chữ số 9)100...0(n chữ số 0)9}}\)
E=\(\overline{\text{11...1(n chữ số 1)55...5(n-1 chữ số 5)6}}\)
Cho x; y là các số nguyên dương thả mãn: \(\dfrac{x^2+xy+1}{y^2+xy+1}\) là một số nguyên> Tính Giá trị của A = \(\dfrac{2010xy}{2009x^2+2011y^2}\)