`sqrt{10+5sqrt3}>sqrt{10-5sqrt3}`
`=>sqrt{10+5sqrt3}-sqrt{10-5sqrt3}>0`
`=>A>0`
`A=sqrt{10+5sqrt3}-sqrt{10-5sqrt3}`
`<=>A^2=10+5sqrt3+10-5sqrt3-2sqrt{(10+5sqrt3)(10-5sqrt3)}`
`<=>A^2=20-2sqrt{100-75}=20-2sqrt{25}`
`<=>A^2=20-2.5=10`
`<=>A=sqrt10`(do `A>0`)
Ta có: \(\sqrt{10+5\sqrt{3}}-\sqrt{10-5\sqrt{3}}\)
\(=\dfrac{\sqrt{20+10\sqrt{3}}-\sqrt{20-10\sqrt{3}}}{\sqrt{2}}\)
\(=\dfrac{\sqrt{15}+\sqrt{5}-\sqrt{15}+\sqrt{5}}{\sqrt{2}}\)
\(=\sqrt{10}\)