Cho hệ pt \(\left\{{}\begin{matrix}x-2y=5\\mx-y=4\end{matrix}\right.\)
a, giải hệ pt với m = 2
b, Tìm m đề hệ pt có nghiệm duy nhất ( x, y ) trong đó x, y trái dấu
c, Tìm m đề hệ pt có nghiệm duy nhất ( x, y ) thỏa mãn x = / y /
cho pt x2+2x+m-1=0(*), trg đó m là tham số
a, giải pt (*) khi m = -2
b, tìm m để pt (*) có 2 nghiệm phân biệt x1và x2 thảo mãn điều kiện x1=2x2
(6-15GP/1 câu) Chứng mịnh định lí Fermat đơn giản, theo hiểu biết của kiến thức Toán học phổ thông:
1. Chứng minh rằng có vô số nghiệm nguyên dương (x,y,z) thỏa mãn \(x^2+y^2=z^2\).
2. Chứng minh rằng có vô số nghiệm nguyên dương (x,y,z) thỏa mãn \(x^2+y^2=z^3\).
3. Chứng minh rằng không có nghiệm nguyên dương (x,y,z) thỏa mãn \(x^3+y^3=z^3\).
4. Nếu ta thay \(z^3\) thành \(z^5\), bài toán số 2 có còn đúng không? Vì sao?
Bài 1 Cho pt bậc 2 ẩn x, tham số m
2x2 + mx + m - 3 = 0 (1)
a, Giải pt (1) khi m = -1
b, Chứng minh pt (1) luôn có 2 nghiệm phân biệt với mọi m
c, Tìm tất cả các giá trị m để pt (1) luôn có 2 nghiệm trái dấu và nghiệm âm có trị tuyệt đối gấp 2 lần nghiệm dương.
Các bạn giải thích cho mình định lí này với (Nêu ví dụ cụ thể nha):
Nếu a là nghiệm nguyên của f(x) và f(1); f(- 1) khác 0 thì \(\dfrac{f\left(1\right)}{a-1};\dfrac{f\left(-1\right)}{a+1}\) đều là số nguyên. Để nhanh chóng loại trừ nghiệm là ước của hệ số tự do
Năm mới mình có món quà dành cho các bạn. Đó chính là bộ đề 5 đề ôn tập thi vào 10 Toán nâng cao và Toán chuyên, các bạn hãy vào đường link dưới đây để nhận quà đầu năm nhé! Chúc các bạn có một năm mới thật mạnh khỏe và hạnh phúc!
Link: Bộ đề ôn tập thi vào 10 - Google Drive
Cho hệ phương trình \(|^{mx+2y=1}_{3x+\left(m+1\right)y=-1}\) (với m là tham số)
a) Giải hệ phương trình với m = 3.
b) Giải và biện luận hệ phương trình theo m.
c) Tìm m để hệ phương trình có nghiệm là số nguyên.
Cho pt ẩn x , tham số m : \(x^2-2\left(t-1\right)x+t^2-3=0\)(1)
a, giải pt (1) khi t=1.
b, tìm t để pt (1) có nghiệm
c,tìm t để pt (1) có hai nghiệm sao cho tổng hai nghiệm bằng tích hai nghiệm
Cho phương trình ẩn x: x2 – 2mx - 1 = 0 (1)
a) Chứng minh rằng phương trình đã cho luôn có hai nghiệm phân biệt x1 và x2.
b) Tìm các giá trị của m để: x12 + x22 – x1x2 = 7