Bạn đã đăng câu hỏi này rồi. Không nên đăng nhiều để tránh loãng box toán nhé.
Bạn đã đăng câu hỏi này rồi. Không nên đăng nhiều để tránh loãng box toán nhé.
Cho p là số nguyên tố lẻ và a,b,c,d là các số nguyên dương nhỏ hơn p đồng thời a2+b2 chia hết cho p và c2+d2 chia hết cho p.C/m: Trong 2 số ac+bd và ad+bc có một và chỉ một số chia hết cho p
Tìm tất cả các số thực a,b,c thoả mãn đồng thời các điều kiện a2 + b2 + c2 = 38, a + b = 8 và
b + c ≥ 7
cho a,b,c thỏa mãn a+b+c=0 và a2=2(a+c+1)(a+b-1). tính giá trị A=a2+b2+c2
tìm số nguyên tố p và các số nguyên dương a,b sao cho \(p^a+p^b\) là số chính phương
cho -2 ≤ a, b, c ≤ 3 và a2 + b2 + c2 = 22. Tìm GTNN của M = a + b + c
cho a,b,c > 0 tìm giá trị nhỏ nhất của 2( a + b + c ) + \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\) Khi a2+b2+c2 = 3
Cho a,b là các số chẵn. Chứng minh rằng a2 + b2 viết được dưới dạng hiệu hai bình phương của 2 số nguyên
cho 3 số thực không âm a,b,c sao cho a2+b2+c2=1 . cmr \(\dfrac{bc}{a^2+1}+\dfrac{ca}{b^2+1}+\dfrac{ab}{c^2+1}\le\dfrac{3}{4}\) (giải chi tiết với ạ !!!!)