x3-6x2+11x-6=0
⇔x3-x2-5x2+5x+6x-6=0
⇔(x3-x2)-(5x2-5x)+(6x-6)=0
⇔x2(x-1)-5x(x-1)+6(x-1)=0
⇔(x-1)(x2-5x+6)=0
⇔(x-1)(x2-2x-3x+6)=0
⇔(x-1)[(x2-2x)-(3x-6)]=0
⇔(x-1)[x(x-2)-3(x-2)]=0
⇔(x-1)(x-2)(x-3)=0
=>\(\left\{{}\begin{matrix}x-1=0\\x-2=0\\x-3=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=1\\x=2\\x=3\end{matrix}\right.\)
Vậy S={1;2;3}