Cho đường tròn (O) đường kính AB cố định . Một đường kính MN thay đổi . Các đường thẳng AM và AN cắt các tiếp tuyến tại B lần lượt là P,Q . Tìm quỹ tích trực tâm các tam giác MPQ và NPQ ?
Cho đoạn thẳng AB và đường tròn (C) tâm O, bán kính r nằm về một phía của đường thẳng AB. Lấy điểm M trên (C), rồi dựng hình bình hành ABMM'. Tìm tập hợp các điểm M' khi M di động trên (C) ?
Cho hai điểm B,C cố định nằm trên (O,R) và một điểm A thay đổi trên đường tròn đó. Chứng minh rằng trực tâm của tam giác ABC nằm trên một đường tròn cố định .
BT1: Cho \(\Delta ABC\) dựng hình vuông BCDE ở phía ngoài \(\Delta ABC\) , qua D và E lần lượt dụng các đường vuông góc với AB và AC. CMR: Hai đường vuông góc đó và AH đồng quy. (AH là đường cao cuả \(\Delta ABC\))
BT2: Cho hai điểm B, C cố định trên đường tròn tâm O và một điểm A thay đổi trên đường tròn đó. Tìm quỹ tích trực tâm H của \(\Delta ABC\)
cho tam giác ABC, dựng đường thẳng d song song với BC cắt AB,AC tại M và N sao cho AM=AN
Một hình bình hành ABCD có hai đỉnh A, B cố định, còn đỉnh C thay đổi trên một đường thẳng d. Tìm quỹ tích đỉnh D
Cho tam giác ABC vuông tại A có M di chuyển trên BC. T,Q là hình chiếu của M trên AB,AC.
a. Tìm quỹ tích trung điểm I của TQ
b. Chứng minh: TQ đi qua 1 điểm cố định F
c. Gọi H,K là hình chiếu của F trên TQ,AB. Tìm quỹ tích điểm H
cho tam giác đều A,B,C. Gọi M,N,P lần lượt là trung điểm của BC,CA,AB. a) Xác định ảnh của A,B qua phép tịnh tiến MC. b)Xác định ảnh của đường thẳng MP qua phép tịnh tiến vecto NA. c) Xác định ảnh của tam giác CMN qua phép tịnh tiến vecto CA. d)Xác định ảnh của hbh BMNP qua phép tịnh tiến (vecto BA- vecto BC)