\(B=\sqrt{6+2\sqrt{2}\cdot\sqrt{3-\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{18-\sqrt{128}}}}}\)
\(B=\sqrt{6+2\sqrt{2}\cdot\sqrt{3-\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{18-8\sqrt{2}}}}}\)
\(B=\sqrt{6+2\sqrt{2}\cdot\sqrt{3-\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{\left(4-\sqrt{2}\right)^2}}}}\)
\(B=\sqrt{6+2\sqrt{2}\cdot\sqrt{3-\sqrt{\sqrt{2}+\sqrt{12}+4-\sqrt{2}}}}\)
\(B=\sqrt{6+2\sqrt{2}\cdot\sqrt{3-\sqrt{4+2\sqrt{3}}}}\)
\(B=\sqrt{6+2\sqrt{2}\cdot\sqrt{3-\sqrt{\left(\sqrt{3}+1\right)^2}}}\)
\(B=\sqrt{6+2\sqrt{2}\cdot\sqrt{3-\sqrt{3}+1}}\)
\(B=\sqrt{6+2\sqrt{2}\cdot\sqrt{2-\sqrt{3}}}\)
\(B=\sqrt{6+2\cdot\sqrt{4-2\sqrt{3}}}\)
\(B=\sqrt{6+2\cdot\sqrt{\left(\sqrt{3}-1\right)^2}}\)
\(B=\sqrt{6+2\left(\sqrt{3}-1\right)}\)
\(B=\sqrt{4+2\sqrt{3}}\)
\(B=\sqrt{\left(\sqrt{3}+1\right)^2}\)
\(B=\sqrt{3}+1\)