Các biểu thức là đa thức là: \(3x{y^2} - 1;\sqrt 2 x + \sqrt 3 y.\)
Đa thức \(3x{y^2} - 1\) có hai hạng tử là \(3x{y^2}\) và \( - 1\).
Đa thức \(\sqrt 2 x + \sqrt 3 y\) có hai hạng tử là \(\sqrt 2 x\) và \(\sqrt 3 y\).
Các biểu thức là đa thức là: \(3x{y^2} - 1;\sqrt 2 x + \sqrt 3 y.\)
Đa thức \(3x{y^2} - 1\) có hai hạng tử là \(3x{y^2}\) và \( - 1\).
Đa thức \(\sqrt 2 x + \sqrt 3 y\) có hai hạng tử là \(\sqrt 2 x\) và \(\sqrt 3 y\).
Trong các biểu thức sau, biểu thức nào là đa thức?
\( - {x^2} + 3x + 1;\dfrac{x}{{\sqrt 5 }};x - \dfrac{{\sqrt 5 }}{x};2024;3{x^2}{y^2} - 5{x^3}y + 2,4;\dfrac{1}{{{x^2} + x + 1}}.\)
Xác định hệ số và bậc của từng hạng tử trong đa thức sau:
a) \({x^2}y - 3xy + 5{x^2}{y^2} + 0,5x - 4\)
b) \(x\sqrt 2 - 2x{y^3} + {y^3} - 7{x^3}y\)
Cho đa thức \(N = 5{y^2}{z^2} - 2x{y^2}z + \dfrac{1}{3}{x^4} - 2{y^2}{z^2} + \dfrac{2}{3}{x^4} + x{y^2}z\).
a) Thu gọn đa thức N.
b) Xác định hệ số và bậc của từng hạng tử (tức là bậc của từng đơn thức) trong dạng thu gọn của N.
Thu gọn rồi tính giá trị của đa thức:
\(M = \dfrac{1}{3}{x^2}y + x{y^2} - xy + \dfrac{1}{2}x{y^2} - 5xy - \dfrac{1}{3}{x^2}y\) tại x=0,5 và y=1.
Thu gọn (nếu cần) và tìm bậc của mỗi đa thức sau:
a) \({x^4} - 3{x^2}{y^2} + 3x{y^2} - {x^4} + 1\)
b) \(5{x^2}y + 8xy - 2{x^2} - 5{x^2}y + {x^2}\)
Với mỗi đa thức sau, thu gọn (nếu cần) và tìm bậc của nó.
a) \(Q = 5{x^2} - 7xy + 2,5{y^2} + 2x - 8,3y + 1;\)
b) \(H = 4{x^5} - \dfrac{1}{2}{x^3}y + \dfrac{3}{4}{x^2}{y^2} - 4{x^5} + 2{y^2} - 7.\)
Cho đa thức \(P = 8{x^2}{y^2}z - 2xyz + 5{y^2}z - 5{x^2}{y^2}z + {x^2}{y^2} - 3{x^2}{y^2}z.\)
a) Thu gọn và tìm bậc của đa thức P;
b) Tính giá trị của đa thức P tại x=-4;y=2 và z=1.
Bạn Trang nêu vấn đề: Một đa thức bậc hai thu gọn với hai biến (x và y) mà mỗi hạng tử của nó đều có hệ số bằng 1 thì có nhiều nhất là mấy hạng tử? Có ba bạn trả lời như sau:
Anh: Có 3 hạng tử
Bình: Có 5 hạng tử
Chung: Có 6 hạng tử
Em hãy nêu ý kiến của mình và cho biết đó là đa thức nào.
Thu gọn đa thức:
a) \(5{x^4} - 2{x^3}y + 20x{y^3} + 6{x^3}y - 3{x^2}{y^2} + x{y^3} - {y^4}\)
b) \(0,6{x^3} + {x^2}z - 2,7x{y^2} + 0,4{x^3} + 1,7x{y^2}\)