bài toán này bắt nguồn 1 phần từ bài: Cho x;y;z nguyên thỏa mãn \(x^3+y^3+z^3⋮3\). Chứng minh \(x+y+z⋮3\)
Quay về bài toán đầu: (cũng chứng minh luôn bài toán trên)
Ta có: (x + y + z)3 = x3 + y3 + z3 +3(x + y)(y + z)(z + x) (*)
Lại có: \(x^3+y^3+z^3⋮3;3\left(x+y\right)\left(y+z\right)\left(z+x\right)⋮3\) nên \(\left(x+y+z\right)^3⋮3\)\(\Rightarrow x+y+z⋮3\)
\(\Rightarrow\left(x+y+z\right)^3⋮27\)
Kết hợp với (*) và \(x^3+y^3+z^3⋮27\)\(\Rightarrow3\left(x+y\right)\left(y+z\right)\left(z+x\right)⋮27\)
\(\Rightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)⋮9\left(1\right)\)
+) Nếu cả 3 số x;y;z cùng chia hết cho 3 ta có đpcm
+) Nếu 3 số x;y;z không cùng chia hết cho 3
Thấy rẳng nếu x;y;z cùng dư 1 hoặc 2 thì mâu thuẫn với (1)
Do đó, để (1) đúng thì trong 3 số x;y;z chỉ có 2 số chia hết cho 3 hoặc có 1 số chia 3 dư 1; 1 số chia 3 dư 2
- Nếu trong 3 số x;y;z chỉ có 2 số chia hết cho 3; giả sử x;y chia hết cho 3
Khi đó; \(x+y⋮3;y+z⋮̸3;z+x⋮̸̸3\)
Để (1) đúng thì \(x+y⋮9\left(đpcm\right)\)
- Nếu trong 3 số x;y;z có 1 số chia 3 dư 1; 1 số chia 3 dư 2; giả sử 2 số đó là y;z
Khi đó, \(x+y⋮̸3;y+z⋮3;z+x⋮̸3\)
Để (1) đúng thì \(y+z⋮9\left(đpcm\right)\)
Vậy ta có đpcm