§1. Bất đẳng thức

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Uyên

biết rằng 3 cạnh a, b, c thỏa \(a\le1\le b\le2\le c\le3\) tìm tam giác abc thỏa mãn đk trên và có diện tích lớn nhất.

Akai Haruma
28 tháng 1 2017 lúc 21:34

Khai bút đầu năm :)

Theo hệ thức Herong: \(S_{ABC}=\sqrt{p(p-a)(p-b)(p-c)}=\frac{\sqrt{(a+b+c)(a+b-c)(a+c-b)(b+c-a)}}{4}\)

Ta đi tìm \(\triangle ABC\) có diện tích lớn nhất, đồng nghĩa với việc cần tìm max của \(A=(a+b+c)(a+b-c)(a+c-b)(b+c-a)\)

Ta có: \(A=[(a+b+c)(a+b-c)][(c+a-b)(c-a+b)]=[(a+b)^2-c^2][c^2-(a-b)^2]\)

Áp dụng BĐT AM-GM: \(A\leq \left(\frac{(a+b)^2-(a-b)^2}{2}\right)2=(2ab)^2\leq 4^2=16\) (do \(a\leq 1\leq b\leq 2\))

\(\Rightarrow S_{ABC_{\max}}=1\). Dấu bằng xảy ra khi \((a,b,c)=(1,2,\sqrt{5})\)

Vậy tam giác $ABC$ có diện tích lớn nhất là tam giác có độ dài ba cạnh là \(1,2,\sqrt{5}\)


Các câu hỏi tương tự
L N T 39
Xem chi tiết
Khởi My
Xem chi tiết
Mẫn Đan
Xem chi tiết
Thanh Thúy Trần
Xem chi tiết
Phạm Kim Oanh
Xem chi tiết
Phạm Kim Oanh
Xem chi tiết
Phạm Kim Oanh
Xem chi tiết
Phạm Kim Oanh
Xem chi tiết
Phạm Kim Oanh
Xem chi tiết