\(\lim\limits_{x\rightarrow0}\frac{\sqrt{3x+1}-1}{x}=\lim\limits_{x\rightarrow0}\frac{3x}{x\left(\sqrt{3x+1}+1\right)}=\lim\limits_{x\rightarrow0}\frac{3}{\sqrt{3x+1}+1}=\frac{3}{2}\)
\(\Rightarrow a^2+b^2=3^2+2^2=13\)
\(\lim\limits_{x\rightarrow0}\frac{\sqrt{3x+1}-1}{x}=\lim\limits_{x\rightarrow0}\frac{3x}{x\left(\sqrt{3x+1}+1\right)}=\lim\limits_{x\rightarrow0}\frac{3}{\sqrt{3x+1}+1}=\frac{3}{2}\)
\(\Rightarrow a^2+b^2=3^2+2^2=13\)
Cho lim \(\left(\frac{\sqrt{x^2+x+2}-\sqrt[3]{2x^3+5x+1}}{x^2-1}\right)=\frac{a}{b}\) \(\left(x\rightarrow\infty\right)\) ( \(\frac{a}{b}\) là phân số tối giản , a , b là số nguyên ) . Tính tổng \(L=a^2+b^2\)
A. 150
B. 143
C. 140
D. 145
Cho hàm số \(y=f\left(x\right)=\frac{2\sqrt{1+x}-\sqrt[3]{8-x}}{x}\) . Tính lim f(x) khi x \(\rightarrow\) 0
A. \(\frac{1}{12}\)
B. \(\frac{13}{12}\)
C. \(+\infty\)
D. \(\frac{10}{11}\)
Cho hàm số \(y=f\left(x\right)=\frac{2\sqrt{1+x}-\sqrt[3]{8-x}}{x}\) . Tính lim f (x ) khi x \(\rightarrow\) 0
A. \(\frac{1}{12}\)
B. \(\frac{13}{12}\)
C. \(+\infty\)
D. \(\frac{10}{11}\)
giới hạn lim \(\frac{\sqrt{x+1}-\sqrt[3]{x+5}}{x-3}\) ( x \(\rightarrow\) 3 ) bằng
A. 0
B. \(\frac{1}{2}\)
C. \(\frac{1}{3}\)
D. \(\frac{1}{6}\)
Trong các giới hạn sau , giới hạn nào không tồn tại ?
A. \(lim\frac{x+1}{\sqrt{x-2}}\left(x\rightarrow1\right)\)
B. \(lim\frac{x+1}{\sqrt{-x+2}}\left(x\rightarrow-1\right)\)
C. \(lim\frac{x+1}{\sqrt{2-x}}\left(x\rightarrow1\right)\)
D. \(lim\frac{x+1}{\sqrt{2+x}}\left(x\rightarrow-1\right)\)
Cho a ,b là các số dương . Biết lim \(\left(\sqrt{9x^2-ax}+\sqrt[3]{27x^3+bx^2+5}\right)=\frac{7}{27}\) \(\left(x\rightarrow-\infty\right)\)
Tìm giá trị lớn nhất của ab
A. \(\frac{49}{18}\)
B. \(\frac{59}{34}\)
C. \(\frac{43}{58}\)
D. \(\frac{75}{68}\)
Câu 1:
Xác đinh k để hàm: f(x)=\(\left\{{}\begin{matrix}\frac{x^{2016}+x-2}{\sqrt{2018x+1}-\sqrt{x+2018}}\\k\end{matrix}\right.\)liên tục tại 1
Câu 2: Cho \(lim\)(x-->1) \(\frac{x^2+ax+b}{x^2-1}=\frac{1}{2}\). Tổng S= \(a^2+b^2\) bằng bao nhiêu
Câu 3: lim(x->1) \(\frac{\sqrt{x^2+x+2}-\sqrt[3]{7x+1}}{\sqrt{2}\left(x-1\right)}=\frac{a\sqrt{2}}{b}+c\) với a/b là phân số tối giản. Tính a+b+c
Cho f (x ) là một đa thức thỏa mãn lim \(\frac{f\left(x\right)-16}{x-1}=24\) ( x \(\rightarrow\) 1 ) . Tính lim \(\frac{f\left(x\right)-16}{\left(x-1\right)\left(\sqrt{2f\left(x\right)+4}+6\right)}\) ( x \(\rightarrow\) 1 )
A. 24
B. \(+\infty\)
C. 2
D. 0
lim \(\frac{x^2+3x-4}{x^2+4x}\) (x \(\rightarrow\) -4 ) bằng
A. 1
B. -1
C. \(\frac{5}{4}\)
D. \(-\frac{5}{4}\)